facebasic / app (13)-w1-full working.py
xtlyxt's picture
Upload app (13)-w1-full working.py
3771585 verified
raw
history blame
6.08 kB
import streamlit as st
from PIL import Image
from transformers import pipeline
import pandas as pd
import matplotlib.pyplot as plt
# Disable PyplotGlobalUseWarning
st.set_option('deprecation.showPyplotGlobalUse', False)
# Create an image classification pipeline with scores
pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None)
# Streamlit app
st.title("Emotion Recognition with vit-face-expression")
# Upload images
uploaded_images = st.file_uploader("Upload images", type=["jpg", "png"], accept_multiple_files=True)
# Store selected file names
selected_file_names = []
# Display thumbnail images alongside file names and sizes in the sidebar
selected_images = []
if uploaded_images:
# Add a "Select All" checkbox in the sidebar
select_all = st.sidebar.checkbox("Select All", False)
for idx, img in enumerate(uploaded_images):
image = Image.open(img)
checkbox_key = f"{img.name}_checkbox_{idx}" # Unique key for each checkbox
# Display thumbnail image and checkbox in sidebar
st.sidebar.image(image, caption=f"{img.name} {img.size / 1024.0:.1f} KB", width=40)
#selected = st.sidebar.checkbox(f"Select {img.name}", value=False, key=checkbox_key)
# If "Select All" is checked, all individual checkboxes are selected
selected = st.sidebar.checkbox(f"Select {img.name}", value=select_all, key=checkbox_key)
if selected:
selected_images.append(image)
selected_file_names.append(img.name)
if st.button("Predict Emotions") and selected_images:
emotions = []
if len(selected_images) == 2:
# Predict emotion for each selected image using the pipeline
results = [pipe(image) for image in selected_images]
# Display images and predicted emotions side by side
col1, col2 = st.columns(2)
for i in range(2):
predicted_class = results[i][0]["label"]
predicted_emotion = predicted_class.split("_")[-1].capitalize()
emotions.append(predicted_emotion)
col = col1 if i == 0 else col2
col.image(selected_images[i], caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
col.write(f"Emotion Scores: {predicted_emotion}: {results[i][0]['score']:.4f}")
# Use the index to get the corresponding filename
col.write(f"Original File Name: {selected_file_names[i]}")
# Display the keys and values of all results
st.write("Keys and Values of all results:")
col1, col2 = st.columns(2)
for i, result in enumerate(results):
col = col1 if i == 0 else col2
col.write(f"Keys and Values of results[{i}]:")
for res in result:
label = res["label"]
score = res["score"]
col.write(f"{label}: {score:.4f}")
else:
# Predict emotion for each selected image using the pipeline
results = [pipe(image) for image in selected_images]
# Display images and predicted emotions
for i, (image, result) in enumerate(zip(selected_images, results)):
predicted_class = result[0]["label"]
predicted_emotion = predicted_class.split("_")[-1].capitalize()
emotions.append(predicted_emotion)
st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
st.write(f"Emotion Scores for #{i+1} Image")
st.write(f"{predicted_emotion}: {result[0]['score']:.4f}")
# Use the index to get the corresponding filename
st.write(f"Original File Name: {selected_file_names[i] if i < len(selected_file_names) else 'Unknown'}")
# Calculate emotion statistics
emotion_counts = pd.Series(emotions).value_counts()
# Define a color map that matches the emotions to specific colors
color_map = {
'Neutral': '#B38B6D', # Taupe
'Happy': '#FFFF00', # Yellow
'Sad': '#0000FF', # Blue
'Angry': '#FF0000', # Red
'Disgust': '#008000', # Green
'Surprise': '#FFA500', # Orange (Bright)
'Fear': '#000000' # Black
# Add more emotions and their corresponding colors here
}
# Calculate the total number of faces analyzed
total_faces = len(selected_images)
# Use the color map to assign colors to the pie chart
pie_colors = [color_map.get(emotion, '#999999') for emotion in emotion_counts.index] # Default to grey if not found
# Plot pie chart with total faces in the title
st.write("Emotion Distribution (Pie Chart):")
fig_pie, ax_pie = plt.subplots()
#font color
ax_pie.pie(emotion_counts, labels=emotion_counts.index, autopct='%1.1f%%', startangle=140, colors=pie_colors, textprops={'color': 'white', 'weight': 'bold'})
ax_pie.pie(emotion_counts, labels=emotion_counts.index, autopct='%1.1f%%', startangle=140, colors=pie_colors)
ax_pie.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
# Add total faces to the title
ax_pie.set_title(f"Total Faces Analyzed: {total_faces}")
st.pyplot(fig_pie)
# Use the same color map for the bar chart
bar_colors = [color_map.get(emotion, '#999999') for emotion in emotion_counts.index] # Default to grey if not found
# Plot bar chart with total faces in the title
st.write("Emotion Distribution (Bar Chart):")
fig_bar, ax_bar = plt.subplots()
emotion_counts.plot(kind='bar', color=bar_colors, ax=ax_bar)
ax_bar.set_xlabel('Emotion')
ax_bar.set_ylabel('Count')
# Add total faces to the title
ax_bar.set_title(f"Emotion Distribution - Total Faces Analyzed: {total_faces}")
ax_bar.yaxis.set_major_locator(plt.MaxNLocator(integer=True)) # Ensure integer ticks on Y-axis
# Display bar values as integers
for i in ax_bar.patches:
ax_bar.text(i.get_x() + i.get_width() / 2, i.get_height() + 0.1, int(i.get_height()), ha='center', va='bottom')
st.pyplot(fig_bar)