HPSv2 / src /open_clip /transform.py
tgxs002's picture
init
54199b6
raw
history blame
7.87 kB
import warnings
from dataclasses import dataclass, asdict
from typing import Any, Dict, Optional, Sequence, Tuple, Union
import torch
import torch.nn as nn
import torchvision.transforms.functional as F
from functools import partial
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
CenterCrop
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
@dataclass
class AugmentationCfg:
scale: Tuple[float, float] = (0.9, 1.0)
ratio: Optional[Tuple[float, float]] = None
color_jitter: Optional[Union[float, Tuple[float, float, float]]] = None
interpolation: Optional[str] = None
re_prob: Optional[float] = None
re_count: Optional[int] = None
use_timm: bool = False
class ResizeMaxSize(nn.Module):
def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0):
super().__init__()
if not isinstance(max_size, int):
raise TypeError(f"Size should be int. Got {type(max_size)}")
self.max_size = max_size
self.interpolation = interpolation
self.fn = min if fn == 'min' else min
self.fill = fill
def forward(self, img):
if isinstance(img, torch.Tensor):
height, width = img.shape[1:]
else:
width, height = img.size
scale = self.max_size / float(max(height, width))
if scale != 1.0:
new_size = tuple(round(dim * scale) for dim in (height, width))
img = F.resize(img, new_size, self.interpolation)
pad_h = self.max_size - new_size[0]
pad_w = self.max_size - new_size[1]
img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill)
return img
def _convert_to_rgb_or_rgba(image):
if image.mode == 'RGBA':
return image
else:
return image.convert('RGB')
# def transform_and_split(merged, transform_fn, normalize_fn):
# transformed = transform_fn(merged)
# crop_img, crop_label = torch.split(transformed, [3,1], dim=0)
# # crop_img = _convert_to_rgb(crop_img)
# crop_img = normalize_fn(ToTensor()(crop_img))
# return crop_img, crop_label
class MaskAwareNormalize(nn.Module):
def __init__(self, mean, std):
super().__init__()
self.normalize = Normalize(mean=mean, std=std)
def forward(self, tensor):
if tensor.shape[0] == 4:
return torch.cat([self.normalize(tensor[:3]), tensor[3:]], dim=0)
else:
return self.normalize(tensor)
def image_transform(
image_size: int,
is_train: bool,
mean: Optional[Tuple[float, ...]] = None,
std: Optional[Tuple[float, ...]] = None,
resize_longest_max: bool = False,
fill_color: int = 0,
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
):
mean = mean or OPENAI_DATASET_MEAN
if not isinstance(mean, (list, tuple)):
mean = (mean,) * 3
std = std or OPENAI_DATASET_STD
if not isinstance(std, (list, tuple)):
std = (std,) * 3
if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
# for square size, pass size as int so that Resize() uses aspect preserving shortest edge
image_size = image_size[0]
if isinstance(aug_cfg, dict):
aug_cfg = AugmentationCfg(**aug_cfg)
else:
aug_cfg = aug_cfg or AugmentationCfg()
normalize = MaskAwareNormalize(mean=mean, std=std)
if is_train:
aug_cfg_dict = {k: v for k, v in asdict(aug_cfg).items() if v is not None}
use_timm = aug_cfg_dict.pop('use_timm', False)
if use_timm:
assert False, "not tested for augmentation with mask"
from timm.data import create_transform # timm can still be optional
if isinstance(image_size, (tuple, list)):
assert len(image_size) >= 2
input_size = (3,) + image_size[-2:]
else:
input_size = (3, image_size, image_size)
# by default, timm aug randomly alternates bicubic & bilinear for better robustness at inference time
aug_cfg_dict.setdefault('interpolation', 'random')
aug_cfg_dict.setdefault('color_jitter', None) # disable by default
train_transform = create_transform(
input_size=input_size,
is_training=True,
hflip=0.,
mean=mean,
std=std,
re_mode='pixel',
**aug_cfg_dict,
)
else:
train_transform = Compose([
_convert_to_rgb_or_rgba,
ToTensor(),
RandomResizedCrop(
image_size,
scale=aug_cfg_dict.pop('scale'),
interpolation=InterpolationMode.BICUBIC,
),
normalize,
])
if aug_cfg_dict:
warnings.warn(f'Unused augmentation cfg items, specify `use_timm` to use ({list(aug_cfg_dict.keys())}).')
return train_transform
else:
transforms = [
_convert_to_rgb_or_rgba,
ToTensor(),
]
if resize_longest_max:
transforms.extend([
ResizeMaxSize(image_size, fill=fill_color)
])
else:
transforms.extend([
Resize(image_size, interpolation=InterpolationMode.BICUBIC),
CenterCrop(image_size),
])
transforms.extend([
normalize,
])
return Compose(transforms)
# def image_transform_region(
# image_size: int,
# is_train: bool,
# mean: Optional[Tuple[float, ...]] = None,
# std: Optional[Tuple[float, ...]] = None,
# resize_longest_max: bool = False,
# fill_color: int = 0,
# aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
# ):
# mean = mean or OPENAI_DATASET_MEAN
# if not isinstance(mean, (list, tuple)):
# mean = (mean,) * 3
# std = std or OPENAI_DATASET_STD
# if not isinstance(std, (list, tuple)):
# std = (std,) * 3
# if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
# # for square size, pass size as int so that Resize() uses aspect preserving shortest edge
# image_size = image_size[0]
# if isinstance(aug_cfg, dict):
# aug_cfg = AugmentationCfg(**aug_cfg)
# else:
# aug_cfg = aug_cfg or AugmentationCfg()
# normalize = Normalize(mean=mean, std=std)
# if is_train:
# aug_cfg_dict = {k: v for k, v in asdict(aug_cfg).items() if v is not None}
# transform = Compose([
# RandomResizedCrop(
# image_size,
# scale=aug_cfg_dict.pop('scale'),
# interpolation=InterpolationMode.BICUBIC,
# ),
# ])
# train_transform = Compose([
# partial(transform_and_split, transform_fn=transform,normalize_fn=normalize)
# ])
# return train_transform
# else:
# if resize_longest_max:
# transform = [
# ResizeMaxSize(image_size, fill=fill_color)
# ]
# val_transform = Compose([
# partial(transform_and_split, transform_fn=transform,normalize_fn=normalize),
# ])
# else:
# transform = [
# Resize(image_size, interpolation=InterpolationMode.BICUBIC),
# CenterCrop(image_size),
# ]
# val_transform = Compose([
# partial(transform_and_split, transform_fn=transform,normalize_fn=normalize),
# ])
# return val_transform