HPSv2 / evaluate.py
tgxs002's picture
init
54199b6
from cProfile import label
import os
import json
import numpy as np
from tqdm import tqdm
from argparse import ArgumentParser
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
from src.open_clip import create_model_and_transforms, get_tokenizer
from src.training.train import calc_ImageReward, inversion_score
from src.training.data import ImageRewardDataset, collate_rank, RankingDataset
parser = ArgumentParser()
parser.add_argument('--data-type', type=str, choices=['benchmark', 'test', 'ImageReward', 'drawbench'])
parser.add_argument('--data-path', type=str, help='path to dataset')
parser.add_argument('--image-path', type=str, help='path to image files')
parser.add_argument('--checkpoint', type=str, help='path to checkpoint')
parser.add_argument('--batch-size', type=int, default=20)
args = parser.parse_args()
batch_size = args.batch_size
args.model = "ViT-H-14"
args.precision = 'amp'
print(args.model)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model, preprocess_train, preprocess_val = create_model_and_transforms(
args.model,
'laion2B-s32B-b79K',
precision=args.precision,
device=device,
jit=False,
force_quick_gelu=False,
force_custom_text=False,
force_patch_dropout=False,
force_image_size=None,
pretrained_image=False,
image_mean=None,
image_std=None,
light_augmentation=True,
aug_cfg={},
output_dict=True,
with_score_predictor=False,
with_region_predictor=False
)
checkpoint = torch.load(args.checkpoint)
model.load_state_dict(checkpoint['state_dict'])
tokenizer = get_tokenizer(args.model)
model.eval()
class BenchmarkDataset(Dataset):
def __init__(self, meta_file, image_folder,transforms, tokenizer):
self.transforms = transforms
self.image_folder = image_folder
self.tokenizer = tokenizer
self.open_image = Image.open
with open(meta_file, 'r') as f:
self.annotations = json.load(f)
def __len__(self):
return len(self.annotations)
def __getitem__(self, idx):
try:
img_path = os.path.join(self.image_folder, f'{idx:05d}.jpg')
images = self.transforms(self.open_image(os.path.join(img_path)))
caption = self.tokenizer(self.annotations[idx])
return images, caption
except:
print('file not exist')
return self.__getitem__((idx + 1) % len(self))
def evaluate_IR(data_path, image_folder, model):
meta_file = data_path + '/ImageReward_test.json'
dataset = ImageRewardDataset(meta_file, image_folder, preprocess_val, tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=4, collate_fn=collate_rank)
score = 0
total = len(dataset)
with torch.no_grad():
for batch in tqdm(dataloader):
images, num_images, labels, texts = batch
images = images.to(device=device, non_blocking=True)
texts = texts.to(device=device, non_blocking=True)
num_images = num_images.to(device=device, non_blocking=True)
labels = labels.to(device=device, non_blocking=True)
with torch.cuda.amp.autocast():
outputs = model(images, texts)
image_features, text_features, logit_scale = outputs["image_features"], outputs["text_features"], outputs["logit_scale"]
logits_per_image = logit_scale * image_features @ text_features.T
paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
predicted = [torch.argsort(-k) for k in paired_logits_list]
hps_ranking = [[predicted[i].tolist().index(j) for j in range(n)] for i,n in enumerate(num_images)]
labels = [label for label in labels.split(num_images.tolist())]
score +=sum([calc_ImageReward(paired_logits_list[i].tolist(), labels[i]) for i in range(len(hps_ranking))])
print('ImageReward:', score/total)
def evaluate_rank(data_path, image_folder, model):
meta_file = data_path + '/test.json'
dataset = RankingDataset(meta_file, image_folder, preprocess_val, tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=4, collate_fn=collate_rank)
score = 0
total = len(dataset)
all_rankings = []
with torch.no_grad():
for batch in tqdm(dataloader):
images, num_images, labels, texts = batch
images = images.to(device=device, non_blocking=True)
texts = texts.to(device=device, non_blocking=True)
num_images = num_images.to(device=device, non_blocking=True)
labels = labels.to(device=device, non_blocking=True)
with torch.cuda.amp.autocast():
outputs = model(images, texts)
image_features, text_features, logit_scale = outputs["image_features"], outputs["text_features"], outputs["logit_scale"]
logits_per_image = logit_scale * image_features @ text_features.T
paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
predicted = [torch.argsort(-k) for k in paired_logits_list]
hps_ranking = [[predicted[i].tolist().index(j) for j in range(n)] for i,n in enumerate(num_images)]
labels = [label for label in labels.split(num_images.tolist())]
all_rankings.extend(hps_ranking)
score += sum([inversion_score(hps_ranking[i], labels[i]) for i in range(len(hps_ranking))])
print('ranking_acc:', score/total)
with open('logs/hps_rank.json', 'w') as f:
json.dump(all_rankings, f)
def collate_eval(batch):
images = torch.stack([sample[0] for sample in batch])
captions = torch.cat([sample[1] for sample in batch])
return images, captions
def evaluate_benchmark(data_path, root_dir, model):
meta_dir = data_path
model_list = os.listdir(root_dir)
style_list = os.listdir(os.path.join(root_dir, model_list[0]))
score = {}
for model_id in model_list:
score[model_id]={}
for style in style_list:
# score[model_id][style] = [0] * 10
score[model_id][style] = []
image_folder = os.path.join(root_dir, model_id, style)
meta_file = os.path.join(meta_dir, f'{style}.json')
dataset = BenchmarkDataset(meta_file, image_folder, preprocess_val, tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_eval)
with torch.no_grad():
for i, batch in enumerate(dataloader):
images, texts = batch
images = images.to(device=device, non_blocking=True)
texts = texts.to(device=device, non_blocking=True)
with torch.cuda.amp.autocast():
outputs = model(images, texts)
image_features, text_features = outputs["image_features"], outputs["text_features"]
logits_per_image = image_features @ text_features.T
# score[model_id][style][i] = torch.sum(torch.diagonal(logits_per_image)).cpu().item() / 80
score[model_id][style].extend(torch.diagonal(logits_per_image).cpu().tolist())
print('-----------benchmark score ---------------- ')
for model_id, data in score.items():
for style , res in data.items():
avg_score = [np.mean(res[i:i+80]) for i in range(0, 800, 80)]
print(model_id, '\t', style, '\t', np.mean(avg_score), '\t', np.std(avg_score))
def evaluate_benchmark_DB(data_path, root_dir, model):
meta_file = data_path + '/drawbench.json'
model_list = os.listdir(root_dir)
score = {}
for model_id in model_list:
image_folder = os.path.join(root_dir, model_id)
dataset = BenchmarkDataset(meta_file, image_folder, preprocess_val, tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=4, collate_fn=collate_eval)
score[model_id] = 0
with torch.no_grad():
for batch in tqdm(dataloader):
images, texts = batch
images = images.to(device=device, non_blocking=True)
texts = texts.to(device=device, non_blocking=True)
with torch.cuda.amp.autocast():
outputs = model(images, texts)
image_features, text_features = outputs["image_features"], outputs["text_features"]
logits_per_image = image_features @ text_features.T
diag = torch.diagonal(logits_per_image)
score[model_id] += torch.sum(diag).cpu().item()
score[model_id] = score[model_id] / len(dataset)
# with open('logs/benchmark_score_DB.json', 'w') as f:
# json.dump(score, f)
print('-----------drawbench score ---------------- ')
for model, data in score.items():
print(model, '\t', '\t', np.mean(data))
if args.data_type == 'ImageReward':
evaluate_IR(args.data_path, args.image_path, model)
elif args.data_type == 'test':
evaluate_rank(args.data_path, args.image_path, model)
elif args.data_type == 'benchmark':
evaluate_benchmark(args.data_path, args.image_path, model)
elif args.data_type == 'drawbench':
evaluate_benchmark_DB(args.data_path, args.image_path, model)
else:
raise NotImplementedError