Spaces:
Running
Running
from pathlib import Path | |
import torch | |
import torch.nn.functional as F | |
from torch import version as torch_version | |
from modules import shared | |
from modules.logging_colors import logger | |
from modules.models import clear_torch_cache | |
from modules.text_generation import get_max_prompt_length | |
try: | |
from exllama.generator import ExLlamaGenerator | |
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig | |
from exllama.tokenizer import ExLlamaTokenizer | |
except: | |
logger.warning('exllama module failed to import. Will attempt to import from repositories/.') | |
try: | |
from modules.relative_imports import RelativeImport | |
with RelativeImport("repositories/exllama"): | |
from generator import ExLlamaGenerator | |
from model import ExLlama, ExLlamaCache, ExLlamaConfig | |
from tokenizer import ExLlamaTokenizer | |
except: | |
logger.error( | |
"Could not find repositories/exllama. Please ensure that exllama" | |
" (https://github.com/turboderp/exllama) is cloned inside repositories/ and is up to date." | |
) | |
raise | |
class ExllamaModel: | |
def __init__(self): | |
pass | |
def from_pretrained(self, path_to_model): | |
path_to_model = Path(f'{shared.args.model_dir}') / Path(path_to_model) | |
tokenizer_model_path = path_to_model / "tokenizer.model" | |
model_config_path = path_to_model / "config.json" | |
# Find the model checkpoint | |
model_path = None | |
for ext in ['.safetensors', '.pt', '.bin']: | |
found = list(path_to_model.glob(f"*{ext}")) | |
if len(found) > 0: | |
if len(found) > 1: | |
logger.warning(f'More than one {ext} model has been found. The last one will be selected. It could be wrong.') | |
model_path = found[-1] | |
break | |
config = ExLlamaConfig(str(model_config_path)) | |
config.model_path = str(model_path) | |
config.max_seq_len = shared.args.max_seq_len | |
config.compress_pos_emb = shared.args.compress_pos_emb | |
if shared.args.gpu_split: | |
config.set_auto_map(shared.args.gpu_split) | |
config.gpu_peer_fix = True | |
if shared.args.alpha_value > 1 and shared.args.rope_freq_base == 0: | |
config.alpha_value = shared.args.alpha_value | |
config.calculate_rotary_embedding_base() | |
elif shared.args.rope_freq_base > 0: | |
config.rotary_embedding_base = shared.args.rope_freq_base | |
if torch_version.hip: | |
config.rmsnorm_no_half2 = True | |
config.rope_no_half2 = True | |
config.matmul_no_half2 = True | |
config.silu_no_half2 = True | |
model = ExLlama(config) | |
tokenizer = ExLlamaTokenizer(str(tokenizer_model_path)) | |
cache = ExLlamaCache(model) | |
generator = ExLlamaGenerator(model, tokenizer, cache) | |
result = self() | |
result.config = config | |
result.model = model | |
result.cache = cache | |
result.tokenizer = tokenizer | |
result.generator = generator | |
return result, result | |
def encode(self, string, **kwargs): | |
return self.tokenizer.encode(string, max_seq_len=self.model.config.max_seq_len, add_bos=True) | |
def decode(self, ids, **kwargs): | |
if isinstance(ids, list): | |
ids = torch.tensor([ids]) | |
elif isinstance(ids, torch.Tensor) and ids.numel() == 1: | |
ids = ids.view(1, -1) | |
return self.tokenizer.decode(ids)[0] | |
def get_logits(self, token_ids, **kwargs): | |
self.cache.current_seq_len = 0 | |
if token_ids.shape[-1] > 1: | |
self.model.forward(token_ids[:, :-1], self.cache, input_mask=None, preprocess_only=True) | |
return self.model.forward(token_ids[:, -1:], self.cache, **kwargs).float().cpu() | |
def generate_with_streaming(self, prompt, state): | |
# The cache batch size must be 2 for CFG and 1 otherwise | |
if state['guidance_scale'] == 1: | |
if self.cache.batch_size == 2: | |
del self.cache | |
clear_torch_cache() | |
self.cache = ExLlamaCache(self.model) | |
self.generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache) | |
else: | |
if self.cache.batch_size == 1: | |
del self.cache | |
clear_torch_cache() | |
self.cache = ExLlamaCache(self.model, batch_size=2) | |
self.generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache) | |
self.generator.settings.temperature = state['temperature'] | |
self.generator.settings.top_p = state['top_p'] | |
self.generator.settings.top_k = state['top_k'] | |
self.generator.settings.typical = state['typical_p'] | |
self.generator.settings.token_repetition_penalty_max = state['repetition_penalty'] | |
self.generator.settings.token_repetition_penalty_sustain = -1 if state['repetition_penalty_range'] <= 0 else state['repetition_penalty_range'] | |
if state['ban_eos_token']: | |
self.generator.disallow_tokens([self.tokenizer.eos_token_id]) | |
else: | |
self.generator.disallow_tokens(None) | |
if state['custom_token_bans']: | |
to_ban = [int(x) for x in state['custom_token_bans'].split(',')] | |
if len(to_ban) > 0: | |
self.generator.disallow_tokens(to_ban) | |
# Case 1: no CFG | |
if state['guidance_scale'] == 1: | |
self.generator.end_beam_search() | |
# Tokenizing the input | |
ids = self.generator.tokenizer.encode(prompt, max_seq_len=self.model.config.max_seq_len) | |
if state['add_bos_token']: | |
ids = torch.cat( | |
[torch.tensor([[self.tokenizer.bos_token_id]]).to(ids.device), | |
ids], dim=1 | |
).to(torch.int64) | |
ids = ids[:, -get_max_prompt_length(state):] | |
if state['auto_max_new_tokens']: | |
max_new_tokens = state['truncation_length'] - ids.shape[-1] | |
else: | |
max_new_tokens = state['max_new_tokens'] | |
self.generator.gen_begin_reuse(ids) | |
initial_len = self.generator.sequence[0].shape[0] | |
has_leading_space = False | |
for i in range(max_new_tokens): | |
token = self.generator.gen_single_token() | |
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'): | |
has_leading_space = True | |
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:]) | |
if has_leading_space: | |
decoded_text = ' ' + decoded_text | |
# Check the partial unicode character | |
if chr(0xfffd) in decoded_text: | |
is_last = i == max_new_tokens - 1 | |
is_stopping = token.item() == self.generator.tokenizer.eos_token_id or shared.stop_everything | |
# If we are not at the end of the generation, we skip this token | |
if not (is_last or is_stopping): | |
continue | |
if token.item() == self.generator.tokenizer.eos_token_id or shared.stop_everything: | |
break | |
yield decoded_text | |
# Case 2: CFG | |
# Copied from https://github.com/turboderp/exllama/blob/master/example_cfg.py | |
else: | |
alpha = state['guidance_scale'] | |
prompts = [prompt, state['negative_prompt'] or ''] | |
ids, mask = self.tokenizer.encode( | |
prompts, | |
return_mask=True, | |
max_seq_len=self.model.config.max_seq_len, | |
add_bos=state['add_bos_token'] | |
) | |
if state['auto_max_new_tokens']: | |
max_new_tokens = state['truncation_length'] - ids[0].shape[-1] | |
else: | |
max_new_tokens = state['max_new_tokens'] | |
self.generator.gen_begin(ids, mask=mask) | |
initial_len = self.generator.sequence[0].shape[0] | |
has_leading_space = False | |
for i in range(max_new_tokens): | |
logits = self.model.forward(self.generator.sequence[:, -1:], self.cache, input_mask=mask) | |
self.generator.apply_rep_penalty(logits) | |
logits = F.log_softmax(logits, dim=-1) | |
logits_mixed = alpha * logits[0] + (1 - alpha) * logits[1] | |
token, _ = self.generator.sample_current(logits_mixed) | |
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'): | |
has_leading_space = True | |
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:]) | |
if has_leading_space: | |
decoded_text = ' ' + decoded_text | |
# Check the partial unicode character | |
if chr(0xfffd) in decoded_text: | |
is_last = i == max_new_tokens - 1 | |
is_stopping = token.item() == self.tokenizer.eos_token_id or shared.stop_everything | |
# If we are not at the end of the generation, we skip this token | |
if not (is_last or is_stopping): | |
continue | |
yield decoded_text | |
if token.item() == self.tokenizer.eos_token_id or shared.stop_everything: | |
break | |
batch_token = token.repeat(2, 1) | |
self.generator.gen_accept_token(batch_token) | |
def generate(self, prompt, state): | |
output = '' | |
for output in self.generate_with_streaming(prompt, state): | |
pass | |
return output | |