|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
import tempfile |
|
import unittest |
|
import unittest.mock as mock |
|
from pathlib import Path |
|
|
|
from huggingface_hub import HfFolder, delete_repo |
|
from huggingface_hub.file_download import http_get |
|
from requests.exceptions import HTTPError |
|
|
|
from transformers import ( |
|
AlbertTokenizer, |
|
AutoTokenizer, |
|
BertTokenizer, |
|
BertTokenizerFast, |
|
GPT2TokenizerFast, |
|
is_tokenizers_available, |
|
) |
|
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers |
|
from transformers.tokenization_utils import Trie |
|
|
|
|
|
sys.path.append(str(Path(__file__).parent.parent / "utils")) |
|
|
|
from test_module.custom_tokenization import CustomTokenizer |
|
|
|
|
|
if is_tokenizers_available(): |
|
from test_module.custom_tokenization_fast import CustomTokenizerFast |
|
|
|
|
|
class TokenizerUtilTester(unittest.TestCase): |
|
def test_cached_files_are_used_when_internet_is_down(self): |
|
|
|
response_mock = mock.Mock() |
|
response_mock.status_code = 500 |
|
response_mock.headers = {} |
|
response_mock.raise_for_status.side_effect = HTTPError |
|
response_mock.json.return_value = {} |
|
|
|
|
|
_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
|
|
|
|
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head: |
|
_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
|
|
mock_head.assert_called() |
|
|
|
@require_tokenizers |
|
def test_cached_files_are_used_when_internet_is_down_missing_files(self): |
|
|
|
response_mock = mock.Mock() |
|
response_mock.status_code = 500 |
|
response_mock.headers = {} |
|
response_mock.raise_for_status.side_effect = HTTPError |
|
response_mock.json.return_value = {} |
|
|
|
|
|
_ = GPT2TokenizerFast.from_pretrained("openai-community/gpt2") |
|
|
|
|
|
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head: |
|
_ = GPT2TokenizerFast.from_pretrained("openai-community/gpt2") |
|
|
|
mock_head.assert_called() |
|
|
|
def test_legacy_load_from_one_file(self): |
|
|
|
try: |
|
tmp_file = tempfile.mktemp() |
|
with open(tmp_file, "wb") as f: |
|
http_get("https://huggingface.co/albert/albert-base-v1/resolve/main/spiece.model", f) |
|
|
|
_ = AlbertTokenizer.from_pretrained(tmp_file) |
|
finally: |
|
os.remove(tmp_file) |
|
|
|
|
|
|
|
if os.path.isfile("tokenizer.json"): |
|
|
|
return |
|
try: |
|
with open("tokenizer.json", "wb") as f: |
|
http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json", f) |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
|
|
self.assertEqual(tokenizer.vocab_size, 1000) |
|
|
|
|
|
finally: |
|
os.remove("tokenizer.json") |
|
|
|
|
|
@is_staging_test |
|
class TokenizerPushToHubTester(unittest.TestCase): |
|
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] |
|
|
|
@classmethod |
|
def setUpClass(cls): |
|
cls._token = TOKEN |
|
HfFolder.save_token(TOKEN) |
|
|
|
@classmethod |
|
def tearDownClass(cls): |
|
try: |
|
delete_repo(token=cls._token, repo_id="test-tokenizer") |
|
except HTTPError: |
|
pass |
|
|
|
try: |
|
delete_repo(token=cls._token, repo_id="valid_org/test-tokenizer-org") |
|
except HTTPError: |
|
pass |
|
|
|
try: |
|
delete_repo(token=cls._token, repo_id="test-dynamic-tokenizer") |
|
except HTTPError: |
|
pass |
|
|
|
def test_push_to_hub(self): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
vocab_file = os.path.join(tmp_dir, "vocab.txt") |
|
with open(vocab_file, "w", encoding="utf-8") as vocab_writer: |
|
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) |
|
tokenizer = BertTokenizer(vocab_file) |
|
|
|
tokenizer.push_to_hub("test-tokenizer", token=self._token) |
|
new_tokenizer = BertTokenizer.from_pretrained(f"{USER}/test-tokenizer") |
|
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab) |
|
|
|
|
|
delete_repo(token=self._token, repo_id="test-tokenizer") |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
tokenizer.save_pretrained(tmp_dir, repo_id="test-tokenizer", push_to_hub=True, token=self._token) |
|
|
|
new_tokenizer = BertTokenizer.from_pretrained(f"{USER}/test-tokenizer") |
|
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab) |
|
|
|
def test_push_to_hub_in_organization(self): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
vocab_file = os.path.join(tmp_dir, "vocab.txt") |
|
with open(vocab_file, "w", encoding="utf-8") as vocab_writer: |
|
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) |
|
tokenizer = BertTokenizer(vocab_file) |
|
|
|
tokenizer.push_to_hub("valid_org/test-tokenizer-org", token=self._token) |
|
new_tokenizer = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org") |
|
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab) |
|
|
|
|
|
delete_repo(token=self._token, repo_id="valid_org/test-tokenizer-org") |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
tokenizer.save_pretrained( |
|
tmp_dir, repo_id="valid_org/test-tokenizer-org", push_to_hub=True, token=self._token |
|
) |
|
|
|
new_tokenizer = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org") |
|
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab) |
|
|
|
@require_tokenizers |
|
def test_push_to_hub_dynamic_tokenizer(self): |
|
CustomTokenizer.register_for_auto_class() |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
vocab_file = os.path.join(tmp_dir, "vocab.txt") |
|
with open(vocab_file, "w", encoding="utf-8") as vocab_writer: |
|
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) |
|
tokenizer = CustomTokenizer(vocab_file) |
|
|
|
|
|
tokenizer.push_to_hub("test-dynamic-tokenizer", token=self._token) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(f"{USER}/test-dynamic-tokenizer", trust_remote_code=True) |
|
|
|
self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizer") |
|
|
|
|
|
CustomTokenizerFast.register_for_auto_class() |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
vocab_file = os.path.join(tmp_dir, "vocab.txt") |
|
with open(vocab_file, "w", encoding="utf-8") as vocab_writer: |
|
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) |
|
|
|
bert_tokenizer = BertTokenizerFast.from_pretrained(tmp_dir) |
|
bert_tokenizer.save_pretrained(tmp_dir) |
|
tokenizer = CustomTokenizerFast.from_pretrained(tmp_dir) |
|
|
|
tokenizer.push_to_hub("test-dynamic-tokenizer", token=self._token) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(f"{USER}/test-dynamic-tokenizer", trust_remote_code=True) |
|
|
|
self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizerFast") |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
f"{USER}/test-dynamic-tokenizer", use_fast=False, trust_remote_code=True |
|
) |
|
|
|
self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizer") |
|
|
|
|
|
class TrieTest(unittest.TestCase): |
|
def test_trie(self): |
|
trie = Trie() |
|
trie.add("Hello ει") |
|
self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {" ": {"ε": {"ι": {"": 1}}}}}}}}}) |
|
trie.add("Hello") |
|
trie.data |
|
self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"ε": {"ι": {"": 1}}}}}}}}}) |
|
|
|
def test_trie_split(self): |
|
trie = Trie() |
|
self.assertEqual(trie.split("[CLS] This is a extra_id_100"), ["[CLS] This is a extra_id_100"]) |
|
trie.add("[CLS]") |
|
trie.add("extra_id_1") |
|
trie.add("extra_id_100") |
|
self.assertEqual(trie.split("[CLS] This is a extra_id_100"), ["[CLS]", " This is a ", "extra_id_100"]) |
|
|
|
def test_trie_single(self): |
|
trie = Trie() |
|
trie.add("A") |
|
self.assertEqual(trie.split("ABC"), ["A", "BC"]) |
|
self.assertEqual(trie.split("BCA"), ["BC", "A"]) |
|
|
|
def test_trie_final(self): |
|
trie = Trie() |
|
trie.add("TOKEN]") |
|
trie.add("[SPECIAL_TOKEN]") |
|
self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]"), ["This is something ", "[SPECIAL_TOKEN]"]) |
|
|
|
def test_trie_subtokens(self): |
|
trie = Trie() |
|
trie.add("A") |
|
trie.add("P") |
|
trie.add("[SPECIAL_TOKEN]") |
|
self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]"), ["This is something ", "[SPECIAL_TOKEN]"]) |
|
|
|
def test_trie_suffix_tokens(self): |
|
trie = Trie() |
|
trie.add("AB") |
|
trie.add("B") |
|
trie.add("C") |
|
self.assertEqual(trie.split("ABC"), ["AB", "C"]) |
|
|
|
def test_trie_skip(self): |
|
trie = Trie() |
|
trie.add("ABC") |
|
trie.add("B") |
|
trie.add("CD") |
|
self.assertEqual(trie.split("ABCD"), ["ABC", "D"]) |
|
|
|
def test_cut_text_hardening(self): |
|
|
|
|
|
trie = Trie() |
|
parts = trie.cut_text("ABC", [0, 0, 2, 1, 2, 3]) |
|
self.assertEqual(parts, ["AB", "C"]) |
|
|