|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import tempfile |
|
import unittest |
|
|
|
from transformers import CLIPTokenizerFast, ProcessorMixin |
|
from transformers.models.auto.processing_auto import processor_class_from_name |
|
from transformers.testing_utils import ( |
|
check_json_file_has_correct_format, |
|
require_tokenizers, |
|
require_torch, |
|
require_vision, |
|
) |
|
from transformers.utils import is_vision_available |
|
|
|
|
|
if is_vision_available(): |
|
from transformers import CLIPImageProcessor |
|
|
|
|
|
@require_torch |
|
class ProcessorTesterMixin: |
|
processor_class = None |
|
|
|
def prepare_processor_dict(self): |
|
return {} |
|
|
|
def get_component(self, attribute, **kwargs): |
|
assert attribute in self.processor_class.attributes |
|
component_class_name = getattr(self.processor_class, f"{attribute}_class") |
|
if isinstance(component_class_name, tuple): |
|
component_class_name = component_class_name[0] |
|
|
|
component_class = processor_class_from_name(component_class_name) |
|
component = component_class.from_pretrained(self.tmpdirname, **kwargs) |
|
|
|
return component |
|
|
|
def prepare_components(self): |
|
components = {} |
|
for attribute in self.processor_class.attributes: |
|
component = self.get_component(attribute) |
|
components[attribute] = component |
|
|
|
return components |
|
|
|
def get_processor(self): |
|
components = self.prepare_components() |
|
processor = self.processor_class(**components, **self.prepare_processor_dict()) |
|
return processor |
|
|
|
def test_processor_to_json_string(self): |
|
processor = self.get_processor() |
|
obj = json.loads(processor.to_json_string()) |
|
for key, value in self.prepare_processor_dict().items(): |
|
self.assertEqual(obj[key], value) |
|
self.assertEqual(getattr(processor, key, None), value) |
|
|
|
def test_processor_from_and_save_pretrained(self): |
|
processor_first = self.get_processor() |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
saved_files = processor_first.save_pretrained(tmpdirname) |
|
if len(saved_files) > 0: |
|
check_json_file_has_correct_format(saved_files[0]) |
|
processor_second = self.processor_class.from_pretrained(tmpdirname) |
|
|
|
self.assertEqual(processor_second.to_dict(), processor_first.to_dict()) |
|
|
|
|
|
class MyProcessor(ProcessorMixin): |
|
attributes = ["image_processor", "tokenizer"] |
|
image_processor_class = "CLIPImageProcessor" |
|
tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast") |
|
|
|
def __init__(self, image_processor=None, tokenizer=None, processor_attr_1=1, processor_attr_2=True): |
|
super().__init__(image_processor, tokenizer) |
|
|
|
self.processor_attr_1 = processor_attr_1 |
|
self.processor_attr_2 = processor_attr_2 |
|
|
|
|
|
@require_tokenizers |
|
@require_vision |
|
class ProcessorTest(unittest.TestCase): |
|
processor_class = MyProcessor |
|
|
|
def prepare_processor_dict(self): |
|
return {"processor_attr_1": 1, "processor_attr_2": False} |
|
|
|
def get_processor(self): |
|
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14") |
|
tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-large-patch14") |
|
processor = MyProcessor(image_processor, tokenizer, **self.prepare_processor_dict()) |
|
|
|
return processor |
|
|
|
def test_processor_to_json_string(self): |
|
processor = self.get_processor() |
|
obj = json.loads(processor.to_json_string()) |
|
for key, value in self.prepare_processor_dict().items(): |
|
self.assertEqual(obj[key], value) |
|
self.assertEqual(getattr(processor, key, None), value) |
|
|
|
def test_processor_from_and_save_pretrained(self): |
|
processor_first = self.get_processor() |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
saved_file = processor_first.save_pretrained(tmpdirname)[0] |
|
check_json_file_has_correct_format(saved_file) |
|
processor_second = self.processor_class.from_pretrained(tmpdirname) |
|
|
|
self.assertEqual(processor_second.to_dict(), processor_first.to_dict()) |
|
|