|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import dataclasses |
|
import io |
|
import itertools |
|
import json |
|
import os |
|
import unittest |
|
from copy import deepcopy |
|
from functools import partial |
|
|
|
import datasets |
|
from parameterized import parameterized |
|
|
|
import tests.trainer.test_trainer |
|
import transformers |
|
from tests.trainer.test_trainer import TrainerIntegrationCommon |
|
from transformers import AutoModel, TrainingArguments, is_torch_available, logging |
|
from transformers.integrations.deepspeed import ( |
|
HfDeepSpeedConfig, |
|
is_deepspeed_available, |
|
unset_hf_deepspeed_config, |
|
) |
|
from transformers.testing_utils import ( |
|
CaptureLogger, |
|
CaptureStd, |
|
CaptureStderr, |
|
LoggingLevel, |
|
TestCasePlus, |
|
backend_device_count, |
|
execute_subprocess_async, |
|
mockenv_context, |
|
require_deepspeed, |
|
require_optuna, |
|
require_torch_accelerator, |
|
require_torch_multi_accelerator, |
|
slow, |
|
torch_device, |
|
) |
|
from transformers.trainer_utils import get_last_checkpoint, set_seed |
|
from transformers.utils import SAFE_WEIGHTS_NAME, is_torch_bf16_available_on_device |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from tests.trainer.test_trainer import ( |
|
RegressionModelConfig, |
|
RegressionPreTrainedModel, |
|
) |
|
|
|
|
|
get_regression_trainer = partial(tests.trainer.test_trainer.get_regression_trainer, log_level="info") |
|
|
|
|
|
set_seed(42) |
|
|
|
|
|
DEFAULT_MASTER_PORT = "10999" |
|
|
|
T5_SMALL = "google-t5/t5-small" |
|
T5_TINY = "patrickvonplaten/t5-tiny-random" |
|
GPT2_TINY = "sshleifer/tiny-gpt2" |
|
GPTJ_TINY = "hf-internal-testing/tiny-random-gptj" |
|
|
|
|
|
def load_json(path): |
|
with open(path) as f: |
|
return json.load(f) |
|
|
|
|
|
def get_master_port(real_launcher=False): |
|
""" |
|
When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed) |
|
the issue is that once the port is tied it can't be used anywhere else outside of this process, |
|
since torch.dist doesn't free the port until the process exits. Therefore for the sake of being |
|
able to run both emulated launcher and normal launcher tests we need 2 distinct ports. |
|
|
|
This function will give the right port in the right context. For real launcher it'll give the |
|
base port, for emulated launcher it'll give the base port + 1. In both cases a string is |
|
returned. |
|
|
|
Args: |
|
`real_launcher`: whether a real launcher is going to be used, or the emulated one |
|
|
|
""" |
|
|
|
master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT) |
|
if not real_launcher: |
|
master_port_base = str(int(master_port_base) + 1) |
|
return master_port_base |
|
|
|
|
|
def require_deepspeed_aio(test_case): |
|
""" |
|
Decorator marking a test that requires deepspeed aio (nvme) |
|
""" |
|
if not is_deepspeed_available(): |
|
return unittest.skip("test requires deepspeed")(test_case) |
|
|
|
import deepspeed |
|
from deepspeed.ops.aio import AsyncIOBuilder |
|
|
|
if not deepspeed.ops.__compatible_ops__[AsyncIOBuilder.NAME]: |
|
return unittest.skip("test requires deepspeed async-io")(test_case) |
|
else: |
|
return test_case |
|
|
|
|
|
if is_deepspeed_available(): |
|
from deepspeed.utils import logger as deepspeed_logger |
|
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint |
|
from transformers.integrations.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled |
|
|
|
|
|
def get_launcher(distributed=False): |
|
|
|
|
|
|
|
|
|
num_gpus = min(2, backend_device_count(torch_device)) if distributed else 1 |
|
master_port = get_master_port(real_launcher=True) |
|
return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split() |
|
|
|
|
|
ZERO2 = "zero2" |
|
ZERO3 = "zero3" |
|
|
|
FP16 = "fp16" |
|
BF16 = "bf16" |
|
|
|
HF_OPTIM = "hf_optim" |
|
HF_SCHEDULER = "hf_scheduler" |
|
DS_OPTIM = "ds_optim" |
|
DS_SCHEDULER = "ds_scheduler" |
|
|
|
optims = [HF_OPTIM, DS_OPTIM] |
|
schedulers = [HF_SCHEDULER, DS_SCHEDULER] |
|
|
|
stages = [ZERO2, ZERO3] |
|
if is_torch_bf16_available_on_device(torch_device): |
|
dtypes = [FP16, BF16] |
|
else: |
|
dtypes = [FP16] |
|
|
|
|
|
def parameterized_custom_name_func(func, param_num, param): |
|
|
|
|
|
param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args)) |
|
return f"{func.__name__}_{param_based_name}" |
|
|
|
|
|
|
|
params = list(itertools.product(stages, dtypes)) |
|
|
|
params_with_optims_and_schedulers = list(itertools.product(stages, dtypes, optims, schedulers)) |
|
|
|
|
|
@require_deepspeed |
|
@require_torch_accelerator |
|
class CoreIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon): |
|
""" |
|
Testing non-Trainer DeepSpeed integration |
|
""" |
|
|
|
def setUp(self): |
|
super().setUp() |
|
|
|
master_port = get_master_port(real_launcher=False) |
|
self.dist_env_1_gpu = { |
|
"MASTER_ADDR": "localhost", |
|
"MASTER_PORT": master_port, |
|
"RANK": "0", |
|
"LOCAL_RANK": "0", |
|
"WORLD_SIZE": "1", |
|
} |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
|
|
|
|
unset_hf_deepspeed_config() |
|
|
|
def test_init_zero3_fp16(self): |
|
|
|
ds_config = { |
|
"train_batch_size": 1, |
|
"zero_optimization": { |
|
"stage": 3, |
|
}, |
|
} |
|
|
|
dschf = HfDeepSpeedConfig(ds_config) |
|
|
|
self.assertTrue(dschf.is_zero3()) |
|
self.assertTrue(is_deepspeed_zero3_enabled()) |
|
|
|
with LoggingLevel(logging.INFO): |
|
with mockenv_context(**self.dist_env_1_gpu): |
|
logger = logging.get_logger("transformers.modeling_utils") |
|
with CaptureLogger(logger) as cl: |
|
AutoModel.from_pretrained(T5_TINY) |
|
self.assertIn("Detected DeepSpeed ZeRO-3", cl.out) |
|
|
|
|
|
del ds_config["zero_optimization"] |
|
dschf = HfDeepSpeedConfig(ds_config) |
|
|
|
self.assertFalse(dschf.is_zero3()) |
|
self.assertFalse(is_deepspeed_zero3_enabled()) |
|
|
|
with LoggingLevel(logging.INFO): |
|
with mockenv_context(**self.dist_env_1_gpu): |
|
logger = logging.get_logger("transformers.modeling_utils") |
|
with CaptureLogger(logger) as cl: |
|
AutoModel.from_pretrained(T5_TINY) |
|
self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out) |
|
|
|
def test_init_zero3_missing_params(self): |
|
|
|
import deepspeed |
|
import torch |
|
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2PreTrainedModel |
|
|
|
class TinyGPT2WithUninitializedWeights(GPT2PreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.transformer = AutoModel.from_pretrained(GPT2_TINY, config=config) |
|
self.new_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=True) |
|
|
|
def forward(self, *args, **kwargs): |
|
transformer_outputs = self.transformer(*args, **kwargs) |
|
hidden_states = transformer_outputs[0] |
|
return self.new_head(hidden_states).float() |
|
|
|
def _init_weights(self, module): |
|
super()._init_weights(module) |
|
if module is self.new_head: |
|
self.new_head.weight.data.fill_(-100.0) |
|
self.new_head.bias.data.fill_(+100.0) |
|
|
|
ds_config = { |
|
"train_batch_size": 1, |
|
"zero_optimization": { |
|
"stage": 3, |
|
}, |
|
} |
|
|
|
dschf = HfDeepSpeedConfig(ds_config) |
|
|
|
self.assertTrue(dschf.is_zero3()) |
|
self.assertTrue(is_deepspeed_zero3_enabled()) |
|
|
|
with LoggingLevel(logging.INFO): |
|
with mockenv_context(**self.dist_env_1_gpu): |
|
logger = logging.get_logger("transformers.modeling_utils") |
|
with CaptureLogger(logger) as cl: |
|
model = TinyGPT2WithUninitializedWeights.from_pretrained(GPT2_TINY) |
|
self.assertIn("Detected DeepSpeed ZeRO-3", cl.out) |
|
self.assertRegex(cl.out, r"newly initialized.*new_head\.bias.*new_head\.weight") |
|
with deepspeed.zero.GatheredParameters([model.new_head.weight, model.new_head.bias]): |
|
self.assertTrue( |
|
torch.allclose(model.new_head.weight, torch.tensor(-100.0, device=model.new_head.weight.device)), |
|
) |
|
self.assertTrue( |
|
torch.allclose(model.new_head.bias, torch.tensor(+100.0, device=model.new_head.bias.device)), |
|
) |
|
|
|
|
|
del ds_config["zero_optimization"] |
|
dschf = HfDeepSpeedConfig(ds_config) |
|
|
|
self.assertFalse(dschf.is_zero3()) |
|
self.assertFalse(is_deepspeed_zero3_enabled()) |
|
|
|
with LoggingLevel(logging.INFO): |
|
with mockenv_context(**self.dist_env_1_gpu): |
|
logger = logging.get_logger("transformers.modeling_utils") |
|
with CaptureLogger(logger) as cl: |
|
model = TinyGPT2WithUninitializedWeights.from_pretrained(GPT2_TINY) |
|
self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out) |
|
self.assertRegex(cl.out, r"newly initialized.*new_head\.bias.*new_head\.weight") |
|
self.assertTrue( |
|
torch.allclose(model.new_head.weight, torch.tensor(-100.0, device=model.new_head.weight.device)), |
|
) |
|
self.assertTrue( |
|
torch.allclose(model.new_head.bias, torch.tensor(+100.0, device=model.new_head.bias.device)), |
|
) |
|
|
|
def test_arange_bf16(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
ds_config = { |
|
"train_batch_size": 1, |
|
"zero_optimization": { |
|
"stage": 3, |
|
}, |
|
"bf16": {"enabled": True}, |
|
} |
|
|
|
dschf = HfDeepSpeedConfig(ds_config) |
|
|
|
self.assertTrue(dschf.is_zero3()) |
|
self.assertTrue(is_deepspeed_zero3_enabled()) |
|
|
|
with LoggingLevel(logging.INFO): |
|
with mockenv_context(**self.dist_env_1_gpu): |
|
logger = logging.get_logger("transformers.modeling_utils") |
|
with CaptureLogger(logger) as cl: |
|
model = AutoModel.from_pretrained(GPTJ_TINY) |
|
self.assertIn("Detected DeepSpeed ZeRO-3", cl.out) |
|
|
|
|
|
self.assertTrue(str(model.h[0].attn.q_proj.weight.dtype) == "torch.bfloat16") |
|
good_deepspeed_sin_cos = model.h[0].attn.embed_positions |
|
|
|
|
|
|
|
def bad_deepspeed_create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor: |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim)) |
|
|
|
|
|
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=inv_freq.dtype), inv_freq) |
|
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1) |
|
|
|
good_deepspeed_create_sinusoidal_positions = transformers.models.gptj.modeling_gptj.create_sinusoidal_positions |
|
transformers.models.gptj.modeling_gptj.create_sinusoidal_positions = bad_deepspeed_create_sinusoidal_positions |
|
|
|
with LoggingLevel(logging.INFO): |
|
with mockenv_context(**self.dist_env_1_gpu): |
|
logger = logging.get_logger("transformers.modeling_utils") |
|
with CaptureLogger(logger) as cl: |
|
model = AutoModel.from_pretrained(GPTJ_TINY) |
|
self.assertIn("Detected DeepSpeed ZeRO-3", cl.out) |
|
|
|
self.assertTrue(str(model.h[0].attn.q_proj.weight.dtype) == "torch.bfloat16") |
|
bad_deepspeed_sin_cos = model.h[0].attn.embed_positions |
|
|
|
|
|
|
|
good_torch_sin_cos = good_deepspeed_create_sinusoidal_positions( |
|
model.config.max_position_embeddings, model.config.rotary_dim |
|
) |
|
self.assertFalse(torch.allclose(good_deepspeed_sin_cos, bad_deepspeed_sin_cos)) |
|
self.assertTrue(torch.allclose(good_torch_sin_cos, good_deepspeed_sin_cos.cpu())) |
|
|
|
|
|
|
|
bad_torch_sin_cos = bad_deepspeed_create_sinusoidal_positions( |
|
model.config.max_position_embeddings, model.config.rotary_dim |
|
) |
|
self.assertTrue(torch.allclose(bad_torch_sin_cos, good_torch_sin_cos)) |
|
|
|
|
|
class TrainerIntegrationDeepSpeedWithCustomConfig(TestCasePlus): |
|
def setUp(self): |
|
super().setUp() |
|
|
|
args = TrainingArguments(".") |
|
self.n_epochs = args.num_train_epochs |
|
self.batch_size = args.train_batch_size |
|
|
|
master_port = get_master_port(real_launcher=False) |
|
self.dist_env_1_gpu = { |
|
"MASTER_ADDR": "localhost", |
|
"MASTER_PORT": master_port, |
|
"RANK": "0", |
|
"LOCAL_RANK": "0", |
|
"WORLD_SIZE": "1", |
|
} |
|
|
|
self.ds_config_file = { |
|
"zero2": f"{self.test_file_dir_str}/ds_config_zero2.json", |
|
"zero3": f"{self.test_file_dir_str}/ds_config_zero3.json", |
|
} |
|
|
|
|
|
with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f: |
|
config_zero2 = json.load(f) |
|
with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f: |
|
config_zero3 = json.load(f) |
|
|
|
|
|
config_zero3["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = False |
|
|
|
self.ds_config_dict = { |
|
"zero2": config_zero2, |
|
"zero3": config_zero3, |
|
} |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
|
|
|
|
unset_hf_deepspeed_config() |
|
|
|
def get_config_dict(self, stage): |
|
|
|
return deepcopy(self.ds_config_dict[stage]) |
|
|
|
|
|
@require_deepspeed |
|
@require_torch_accelerator |
|
class TrainerIntegrationDeepSpeed(TrainerIntegrationDeepSpeedWithCustomConfig, TrainerIntegrationCommon): |
|
""" |
|
|
|
This class is for testing directly via get_regression_trainer |
|
|
|
It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods |
|
which we can re-use here. |
|
|
|
Important: this class' setup can only work with a single gpu because it runs within the current |
|
pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher. |
|
|
|
Note: if any of the tests of this class get run there will be at least one gpu occupied by them |
|
until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels |
|
won't be released until this pytest worker exits. |
|
|
|
This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new |
|
processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This |
|
is not a bug. |
|
""" |
|
|
|
|
|
|
|
def test_hf_ds_config_mismatch(self): |
|
ds_config = self.get_config_dict(ZERO2) |
|
|
|
|
|
|
|
per_device_train_batch_size = 2 |
|
ds_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size + 2 |
|
|
|
ds_config["train_batch_size"] = 1000 |
|
|
|
gradient_accumulation_steps = 2 |
|
ds_config["gradient_accumulation_steps"] = gradient_accumulation_steps + 2 |
|
|
|
max_grad_norm = 1.0 |
|
ds_config["gradient_clipping"] = max_grad_norm + 0.1 |
|
|
|
adam_beta1, adam_beta2 = 0.9, 0.99 |
|
ds_config["optimizer"]["params"]["betas"] = [adam_beta1 - 0.1, adam_beta2 - 0.1] |
|
|
|
fp16 = True |
|
ds_config["fp16"]["enabled"] = not fp16 |
|
|
|
keys = [ |
|
"per_device_train_batch_size", |
|
"train_batch_size", |
|
"gradient_accumulation_steps", |
|
"max_grad_norm", |
|
"betas", |
|
"fp16", |
|
] |
|
|
|
with mockenv_context(**self.dist_env_1_gpu): |
|
trainer = get_regression_trainer( |
|
local_rank=0, |
|
fp16=fp16, |
|
deepspeed=ds_config, |
|
per_device_train_batch_size=per_device_train_batch_size, |
|
gradient_accumulation_steps=gradient_accumulation_steps, |
|
max_grad_norm=max_grad_norm, |
|
adam_beta1=adam_beta1, |
|
adam_beta2=adam_beta2, |
|
) |
|
with self.assertRaises(Exception) as context: |
|
trainer.train() |
|
|
|
for key in keys: |
|
self.assertTrue( |
|
key in str(context.exception), |
|
f"{key} is not in the exception message:\n{context.exception}", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_hf_scheduler_hf_optimizer(self): |
|
a = 0 |
|
with mockenv_context(**self.dist_env_1_gpu): |
|
ds_config_zero2_dict = self.get_config_dict(ZERO2) |
|
del ds_config_zero2_dict["optimizer"] |
|
del ds_config_zero2_dict["scheduler"] |
|
ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none" |
|
ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1 |
|
trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict) |
|
trainer.train() |
|
new_a = trainer.model.a.item() |
|
self.assertNotEqual(new_a, a) |
|
|
|
def test_ds_scheduler_hf_optimizer(self): |
|
a = 0 |
|
with mockenv_context(**self.dist_env_1_gpu): |
|
ds_config_zero2_dict = self.get_config_dict(ZERO2) |
|
del ds_config_zero2_dict["optimizer"] |
|
ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none" |
|
ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1 |
|
trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict) |
|
trainer.train() |
|
new_a = trainer.model.a.item() |
|
self.assertNotEqual(new_a, a) |
|
|
|
def test_hf_scheduler_ds_optimizer(self): |
|
a = 0 |
|
with mockenv_context(**self.dist_env_1_gpu): |
|
ds_config_zero2_dict = self.get_config_dict(ZERO2) |
|
del ds_config_zero2_dict["scheduler"] |
|
ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none" |
|
ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1 |
|
trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict) |
|
trainer.train() |
|
new_a = trainer.model.a.item() |
|
self.assertNotEqual(new_a, a) |
|
|
|
@require_deepspeed_aio |
|
def test_stage3_nvme_offload(self): |
|
with mockenv_context(**self.dist_env_1_gpu): |
|
|
|
|
|
nvme_path = self.get_auto_remove_tmp_dir() |
|
nvme_config = {"device": "nvme", "nvme_path": nvme_path} |
|
ds_config_zero3_dict = self.get_config_dict(ZERO3) |
|
ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config |
|
ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config |
|
trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero3_dict) |
|
with CaptureLogger(deepspeed_logger) as cl: |
|
trainer.train() |
|
self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none") |
|
|
|
@require_optuna |
|
def test_hyperparameter_search(self): |
|
with mockenv_context(**self.dist_env_1_gpu): |
|
ds_config_zero3_dict = self.get_config_dict(ZERO3) |
|
|
|
|
|
def model_init(): |
|
config = RegressionModelConfig(a=0, b=0, double_output=False) |
|
model = RegressionPreTrainedModel(config) |
|
return model |
|
|
|
trainer = get_regression_trainer( |
|
local_rank=0, |
|
fp16=True, |
|
model_init=model_init, |
|
deepspeed=ds_config_zero3_dict, |
|
) |
|
|
|
n_trials = 3 |
|
with CaptureLogger(deepspeed_logger) as cl: |
|
with CaptureStd() as cs: |
|
trainer.hyperparameter_search(direction="maximize", n_trials=n_trials) |
|
self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none") |
|
self.assertIn(f"Trial {n_trials-1} finished with value", cs.err, "expected hyperparameter_search output") |
|
self.assertIn("Best is trial", cs.err, "expected hyperparameter_search output") |
|
|
|
|
|
|
|
@parameterized.expand(params, name_func=parameterized_custom_name_func) |
|
def test_hf_optimizer_with_offload(self, stage, dtype): |
|
|
|
ds_config_dict = self.get_config_dict(stage) |
|
del ds_config_dict["optimizer"] |
|
|
|
ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu" |
|
ds_config_dict["zero_force_ds_cpu_optimizer"] = False |
|
with mockenv_context(**self.dist_env_1_gpu): |
|
kwargs = {"local_rank": 0, "deepspeed": ds_config_dict} |
|
kwargs[dtype] = True |
|
trainer = get_regression_trainer(**kwargs) |
|
with CaptureLogger(deepspeed_logger) as cl: |
|
trainer.train() |
|
self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none") |
|
|
|
@parameterized.expand(params, name_func=parameterized_custom_name_func) |
|
def test_fake_notebook_no_launcher(self, stage, dtype): |
|
|
|
|
|
|
|
|
|
|
|
|
|
with mockenv_context(**self.dist_env_1_gpu): |
|
kwargs = {"local_rank": 0, "deepspeed": self.get_config_dict(stage)} |
|
kwargs[dtype] = True |
|
trainer = get_regression_trainer(**kwargs) |
|
|
|
with CaptureLogger(deepspeed_logger) as cl: |
|
trainer.train() |
|
self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none") |
|
|
|
@parameterized.expand(params, name_func=parameterized_custom_name_func) |
|
def test_early_get_last_lr(self, stage, dtype): |
|
|
|
|
|
|
|
|
|
|
|
|
|
with mockenv_context(**self.dist_env_1_gpu): |
|
a = b = 0.0 |
|
kwargs = { |
|
"a": a, |
|
"b": b, |
|
"local_rank": 0, |
|
"train_len": 8, |
|
"deepspeed": self.get_config_dict(stage), |
|
"per_device_train_batch_size": 8, |
|
"logging_steps": 1, |
|
} |
|
kwargs[dtype] = True |
|
trainer = get_regression_trainer(**kwargs) |
|
|
|
trainer.train() |
|
post_train_a = trainer.model.a.item() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (stage == ZERO3 and dtype == FP16) or (dtype == BF16): |
|
return |
|
|
|
|
|
|
|
self.assertEqual(post_train_a, a) |
|
|
|
@parameterized.expand(params, name_func=parameterized_custom_name_func) |
|
def test_gradient_accumulation(self, stage, dtype): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_len = 64 |
|
a = b = 0.0 |
|
|
|
kwargs = { |
|
"a": a, |
|
"b": b, |
|
"local_rank": 0, |
|
"train_len": train_len, |
|
"deepspeed": self.get_config_dict(stage), |
|
} |
|
kwargs[dtype] = True |
|
|
|
with mockenv_context(**self.dist_env_1_gpu): |
|
no_grad_accum_trainer = get_regression_trainer( |
|
**kwargs, |
|
per_device_train_batch_size=16, |
|
gradient_accumulation_steps=1, |
|
) |
|
no_grad_accum_result = no_grad_accum_trainer.train() |
|
no_grad_accum_loss = no_grad_accum_result.training_loss |
|
no_grad_accum_a = no_grad_accum_trainer.model.a.item() |
|
no_grad_accum_b = no_grad_accum_trainer.model.b.item() |
|
|
|
self.assertNotEqual(no_grad_accum_a, a) |
|
|
|
with mockenv_context(**self.dist_env_1_gpu): |
|
yes_grad_accum_trainer = get_regression_trainer( |
|
**kwargs, |
|
per_device_train_batch_size=4, |
|
gradient_accumulation_steps=4, |
|
) |
|
yes_grad_accum_result = yes_grad_accum_trainer.train() |
|
yes_grad_accum_loss = yes_grad_accum_result.training_loss |
|
yes_grad_accum_a = yes_grad_accum_trainer.model.a.item() |
|
yes_grad_accum_b = yes_grad_accum_trainer.model.b.item() |
|
self.assertNotEqual(yes_grad_accum_a, a) |
|
|
|
|
|
|
|
self.assertAlmostEqual(no_grad_accum_a, yes_grad_accum_a, places=5) |
|
self.assertAlmostEqual(no_grad_accum_b, yes_grad_accum_b, places=5) |
|
|
|
|
|
self.assertTrue((no_grad_accum_loss - yes_grad_accum_loss) / (no_grad_accum_loss + 1e-15) <= 1e-3) |
|
|
|
def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage, dtype): |
|
|
|
file_list = [SAFE_WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"] |
|
|
|
if stage == ZERO2: |
|
ds_file_list = ["mp_rank_00_model_states.pt"] |
|
elif stage == ZERO3: |
|
ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"] |
|
else: |
|
raise ValueError(f"unknown stage {stage}") |
|
|
|
if dtype == "bf16": |
|
ds_file_list.append("bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt") |
|
|
|
for step in range(freq, total, freq): |
|
checkpoint = os.path.join(output_dir, f"checkpoint-{step}") |
|
self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found") |
|
|
|
for filename in file_list: |
|
path = os.path.join(checkpoint, filename) |
|
self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found") |
|
|
|
|
|
ds_path = os.path.join(checkpoint, f"global_step{step}") |
|
for filename in ds_file_list: |
|
|
|
|
|
path = os.path.join(ds_path, filename) |
|
self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found") |
|
|
|
@parameterized.expand(params, name_func=parameterized_custom_name_func) |
|
def test_save_checkpoints(self, stage, dtype): |
|
|
|
|
|
freq = 5 |
|
output_dir = self.get_auto_remove_tmp_dir() |
|
ds_config_dict = self.get_config_dict(stage) |
|
if dtype == FP16: |
|
ds_config_dict["fp16"]["initial_scale_power"] = 1 |
|
|
|
if stage == ZERO3: |
|
ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True |
|
|
|
|
|
with mockenv_context(**self.dist_env_1_gpu): |
|
kwargs = { |
|
"output_dir": output_dir, |
|
"save_steps": freq, |
|
"deepspeed": ds_config_dict, |
|
} |
|
kwargs[dtype] = True |
|
trainer = get_regression_trainer(**kwargs) |
|
trainer.train() |
|
|
|
total = int(self.n_epochs * 64 / self.batch_size) |
|
self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage, dtype) |
|
|
|
@parameterized.expand(params, name_func=parameterized_custom_name_func) |
|
def test_can_resume_training_errors(self, stage, dtype): |
|
with mockenv_context(**self.dist_env_1_gpu): |
|
ds_config_dict = self.get_config_dict(stage) |
|
output_dir = self.get_auto_remove_tmp_dir() |
|
kwargs = {"output_dir": output_dir, "deepspeed": ds_config_dict} |
|
kwargs[dtype] = True |
|
trainer = get_regression_trainer(**kwargs) |
|
|
|
|
|
with self.assertRaises(Exception) as context: |
|
trainer.train(resume_from_checkpoint=True) |
|
self.assertTrue( |
|
"No valid checkpoint found in output directory" in str(context.exception), |
|
f"got exception: {context.exception}", |
|
) |
|
|
|
|
|
with self.assertRaises(Exception) as context: |
|
checkpoint = os.path.join(output_dir, "checkpoint-5") |
|
trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus") |
|
|
|
@parameterized.expand(params_with_optims_and_schedulers, name_func=parameterized_custom_name_func) |
|
def test_can_resume_training_normal(self, stage, dtype, optim, scheduler): |
|
|
|
|
|
|
|
|
|
|
|
if optim == HF_OPTIM and scheduler == HF_SCHEDULER: |
|
return |
|
|
|
output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False) |
|
ds_config_dict = self.get_config_dict(stage) |
|
if dtype == FP16: |
|
ds_config_dict["fp16"]["initial_scale_power"] = 1 |
|
|
|
if stage == ZERO3: |
|
ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True |
|
|
|
if optim == HF_OPTIM: |
|
del ds_config_dict["optimizer"] |
|
|
|
if scheduler == HF_SCHEDULER: |
|
del ds_config_dict["scheduler"] |
|
|
|
kwargs = { |
|
"output_dir": output_dir, |
|
"train_len": 128, |
|
"save_steps": 5, |
|
"learning_rate": 0.1, |
|
"deepspeed": ds_config_dict, |
|
} |
|
kwargs[dtype] = True |
|
|
|
with mockenv_context(**self.dist_env_1_gpu): |
|
trainer = get_regression_trainer(**kwargs) |
|
trainer.train() |
|
(a, b) = trainer.model.a.item(), trainer.model.b.item() |
|
state = dataclasses.asdict(trainer.state) |
|
|
|
checkpoint = os.path.join(output_dir, "checkpoint-5") |
|
|
|
|
|
trainer = get_regression_trainer(**kwargs) |
|
|
|
trainer.train(resume_from_checkpoint=checkpoint) |
|
(a1, b1) = trainer.model.a.item(), trainer.model.b.item() |
|
state1 = dataclasses.asdict(trainer.state) |
|
self.assertEqual(a, a1) |
|
self.assertEqual(b, b1) |
|
self.check_trainer_state_are_the_same(state, state1) |
|
|
|
|
|
checkpoint = os.path.join(output_dir, "checkpoint-15") |
|
|
|
|
|
trainer = get_regression_trainer(**kwargs) |
|
|
|
trainer.train(resume_from_checkpoint=checkpoint) |
|
(a1, b1) = trainer.model.a.item(), trainer.model.b.item() |
|
state1 = dataclasses.asdict(trainer.state) |
|
self.assertEqual(a, a1) |
|
self.assertEqual(b, b1) |
|
self.check_trainer_state_are_the_same(state, state1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
@parameterized.expand(params, name_func=parameterized_custom_name_func) |
|
def test_load_state_dict_from_zero_checkpoint(self, stage, dtype): |
|
|
|
|
|
output_dir = self.get_auto_remove_tmp_dir() |
|
|
|
ds_config_dict = self.get_config_dict(stage) |
|
|
|
kwargs = { |
|
"output_dir": output_dir, |
|
"train_len": 4, |
|
"per_device_train_batch_size": 4, |
|
"num_train_epochs": 1, |
|
"save_strategy": "steps", |
|
"save_steps": 1, |
|
"learning_rate": 0.1, |
|
"deepspeed": ds_config_dict, |
|
} |
|
kwargs[dtype] = True |
|
|
|
with mockenv_context(**self.dist_env_1_gpu): |
|
trainer = get_regression_trainer(**kwargs) |
|
trainer.train() |
|
(a, b) = trainer.model.a.item(), trainer.model.b.item() |
|
state = dataclasses.asdict(trainer.state) |
|
|
|
checkpoint_dir = get_last_checkpoint(output_dir) |
|
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) |
|
|
|
(a1, b1) = model.a.item(), model.b.item() |
|
state1 = dataclasses.asdict(trainer.state) |
|
self.assertEqual(a, a1) |
|
self.assertEqual(b, b1) |
|
self.check_trainer_state_are_the_same(state, state1) |
|
|
|
def test_config_object(self): |
|
|
|
|
|
output_dir = self.get_auto_remove_tmp_dir() |
|
kwargs = {"output_dir": output_dir, "train_len": 8, "fp16": True} |
|
|
|
ds_config_zero3_dict = self.get_config_dict(ZERO3) |
|
ds_config_zero2_dict = self.get_config_dict(ZERO2) |
|
|
|
with mockenv_context(**self.dist_env_1_gpu): |
|
trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs) |
|
self.assertTrue(is_deepspeed_zero3_enabled()) |
|
|
|
|
|
trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs) |
|
trainer.train() |
|
self.assertTrue(is_deepspeed_zero3_enabled()) |
|
|
|
|
|
trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs) |
|
self.assertFalse(is_deepspeed_zero3_enabled()) |
|
|
|
|
|
config = deepspeed_config() |
|
self.assertTrue(bool(config), "Deepspeed config should be accessible") |
|
|
|
|
|
trainer.accelerator.state._reset_state() |
|
del trainer |
|
|
|
config = deepspeed_config() |
|
self.assertFalse(is_deepspeed_zero3_enabled()) |
|
self.assertFalse(bool(config), "Deepspeed config should not be accessible") |
|
|
|
@parameterized.expand(params, name_func=parameterized_custom_name_func) |
|
def test_load_best_model(self, stage, dtype): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer |
|
|
|
output_dir = self.get_auto_remove_tmp_dir() |
|
|
|
ds_config_dict = self.get_config_dict(stage) |
|
del ds_config_dict["optimizer"] |
|
del ds_config_dict["scheduler"] |
|
ds_config_dict["zero_force_ds_cpu_optimizer"] = False |
|
|
|
ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True |
|
|
|
with mockenv_context(**self.dist_env_1_gpu): |
|
args_dict = { |
|
"per_device_train_batch_size": 1, |
|
"per_device_eval_batch_size": 1, |
|
"gradient_accumulation_steps": 1, |
|
"learning_rate": 1e-4, |
|
"num_train_epochs": 1, |
|
"do_train": True, |
|
"do_eval": True, |
|
"optim": "adafactor", |
|
"eval_strategy": "steps", |
|
"eval_steps": 1, |
|
"save_strategy": "steps", |
|
"save_steps": 1, |
|
"load_best_model_at_end": True, |
|
"max_steps": 1, |
|
"deepspeed": ds_config_dict, |
|
"report_to": "none", |
|
} |
|
|
|
training_args = TrainingArguments(output_dir, **args_dict) |
|
tokenizer = T5Tokenizer.from_pretrained(T5_TINY) |
|
model = T5ForConditionalGeneration.from_pretrained(T5_TINY) |
|
|
|
def _add_eos_to_examples(example): |
|
example["input_text"] = f"question: {example['question']} context: {example['context']}" |
|
example["target_text"] = example["answers"]["text"][0] if len(example["answers"]["text"]) > 0 else "" |
|
return example |
|
|
|
def _convert_to_features(example_batch): |
|
input_encodings = tokenizer.batch_encode_plus( |
|
example_batch["input_text"], pad_to_max_length=True, max_length=512, truncation=True |
|
) |
|
target_encodings = tokenizer.batch_encode_plus( |
|
example_batch["target_text"], pad_to_max_length=True, max_length=16, truncation=True |
|
) |
|
|
|
encodings = { |
|
"input_ids": input_encodings["input_ids"], |
|
"attention_mask": input_encodings["attention_mask"], |
|
"labels": target_encodings["input_ids"], |
|
} |
|
|
|
return encodings |
|
|
|
def get_dataset(): |
|
data_file = str(self.tests_dir / "fixtures/tests_samples/SQUAD/sample.json") |
|
data_files = {"train": data_file, "validation": data_file} |
|
raw_datasets = datasets.load_dataset("json", data_files=data_files, field="data") |
|
train_dataset = raw_datasets["train"].map(_add_eos_to_examples).map(_convert_to_features, batched=True) |
|
valid_dataset = deepcopy(train_dataset) |
|
return train_dataset, valid_dataset |
|
|
|
train_dataset, eval_dataset = get_dataset() |
|
|
|
trainer = Trainer( |
|
model=model, |
|
tokenizer=tokenizer, |
|
args=training_args, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
) |
|
trainer.train() |
|
trainer.evaluate() |
|
|
|
|
|
@slow |
|
@require_deepspeed |
|
@require_torch_accelerator |
|
class TestDeepSpeedWithLauncher(TestCasePlus): |
|
"""This class is for testing via an external script - can do multiple gpus""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@parameterized.expand(params, name_func=parameterized_custom_name_func) |
|
@require_torch_multi_accelerator |
|
def test_basic_distributed(self, stage, dtype): |
|
self.run_and_check(stage=stage, dtype=dtype, distributed=True) |
|
|
|
def test_do_eval_no_train(self): |
|
|
|
self.run_and_check( |
|
stage=ZERO3, |
|
dtype=FP16, |
|
eval_steps=1, |
|
distributed=False, |
|
do_train=False, |
|
do_eval=True, |
|
) |
|
|
|
@parameterized.expand(params, name_func=parameterized_custom_name_func) |
|
def test_fp32_non_distributed(self, stage, dtype): |
|
|
|
|
|
self.run_and_check( |
|
stage=stage, |
|
dtype=dtype, |
|
model_name=T5_TINY, |
|
distributed=False, |
|
do_train=True, |
|
do_eval=True, |
|
quality_checks=False, |
|
fp32=True, |
|
) |
|
|
|
@parameterized.expand(params, name_func=parameterized_custom_name_func) |
|
@require_torch_multi_accelerator |
|
def test_fp32_distributed(self, stage, dtype): |
|
|
|
|
|
self.run_and_check( |
|
stage=stage, |
|
dtype=dtype, |
|
model_name=T5_TINY, |
|
distributed=True, |
|
do_train=True, |
|
do_eval=True, |
|
quality_checks=False, |
|
fp32=True, |
|
) |
|
|
|
@parameterized.expand(params, name_func=parameterized_custom_name_func) |
|
def test_resume_train_not_from_ds_checkpoint(self, stage, dtype): |
|
|
|
|
|
|
|
do_train = True |
|
do_eval = False |
|
kwargs = { |
|
"stage": stage, |
|
"dtype": dtype, |
|
"eval_steps": 1, |
|
"distributed": True, |
|
"do_train": do_train, |
|
"do_eval": do_eval, |
|
} |
|
|
|
|
|
output_dir = self.run_and_check(**kwargs) |
|
|
|
|
|
|
|
output_dir = self.run_trainer(**kwargs, model_name=output_dir) |
|
|
|
self.do_checks(output_dir, do_train=do_train, do_eval=do_eval) |
|
|
|
@parameterized.expand(["bf16", "fp16", "fp32"]) |
|
@require_torch_multi_accelerator |
|
def test_inference(self, dtype): |
|
if dtype == "bf16" and not is_torch_bf16_available_on_device(torch_device): |
|
self.skipTest("test requires bfloat16 hardware support") |
|
|
|
|
|
|
|
fp32 = True if dtype == "fp32" else False |
|
self.run_and_check( |
|
stage=ZERO3, |
|
dtype=FP16, |
|
model_name=T5_TINY, |
|
distributed=True, |
|
do_train=False, |
|
do_eval=True, |
|
quality_checks=False, |
|
fp32=fp32, |
|
) |
|
|
|
def do_checks(self, output_dir, do_train=True, do_eval=True, quality_checks=True): |
|
if do_train: |
|
train_metrics = load_json(os.path.join(output_dir, "train_results.json")) |
|
self.assertIn("train_samples_per_second", train_metrics) |
|
if quality_checks: |
|
self.assertGreater(train_metrics["train_samples_per_second"], 0.5) |
|
|
|
if do_eval: |
|
eval_metrics = load_json(os.path.join(output_dir, "eval_results.json")) |
|
self.assertIn("eval_bleu", eval_metrics) |
|
if quality_checks: |
|
self.assertGreater(eval_metrics["eval_bleu"], 1) |
|
|
|
|
|
def run_and_check( |
|
self, |
|
stage, |
|
dtype, |
|
model_name: str = T5_SMALL, |
|
eval_steps: int = 10, |
|
distributed: bool = True, |
|
do_train: bool = True, |
|
do_eval: bool = True, |
|
quality_checks: bool = True, |
|
fp32: bool = False, |
|
extra_args_str: str = None, |
|
remove_args_str: str = None, |
|
): |
|
|
|
output_dir = self.run_trainer( |
|
stage=stage, |
|
dtype=dtype, |
|
model_name=model_name, |
|
eval_steps=eval_steps, |
|
num_train_epochs=1, |
|
do_train=do_train, |
|
do_eval=do_eval, |
|
distributed=distributed, |
|
fp32=fp32, |
|
extra_args_str=extra_args_str, |
|
remove_args_str=remove_args_str, |
|
) |
|
|
|
self.do_checks(output_dir, do_train=do_train, do_eval=do_eval, quality_checks=quality_checks) |
|
|
|
return output_dir |
|
|
|
def run_trainer( |
|
self, |
|
stage: str, |
|
dtype: str, |
|
model_name: str, |
|
eval_steps: int = 10, |
|
num_train_epochs: int = 1, |
|
do_train: bool = False, |
|
do_eval: bool = True, |
|
distributed: bool = True, |
|
fp32: bool = False, |
|
extra_args_str: str = None, |
|
remove_args_str: str = None, |
|
): |
|
max_len = 32 |
|
data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" |
|
output_dir = self.get_auto_remove_tmp_dir() |
|
args = f""" |
|
--model_name_or_path {model_name} |
|
--train_file {data_dir}/train.json |
|
--validation_file {data_dir}/val.json |
|
--output_dir {output_dir} |
|
--overwrite_output_dir |
|
--max_source_length {max_len} |
|
--max_target_length {max_len} |
|
--val_max_target_length {max_len} |
|
--warmup_steps 8 |
|
--predict_with_generate |
|
--save_steps 0 |
|
--eval_steps {eval_steps} |
|
--group_by_length |
|
--label_smoothing_factor 0.1 |
|
--source_lang en |
|
--target_lang ro |
|
--report_to none |
|
""".split() |
|
args.extend(["--source_prefix", '"translate English to Romanian: "']) |
|
|
|
if not fp32: |
|
args.extend([f"--{dtype}"]) |
|
|
|
actions = 0 |
|
if do_train: |
|
actions += 1 |
|
args.extend( |
|
f""" |
|
--do_train |
|
--num_train_epochs {str(num_train_epochs)} |
|
--max_train_samples 16 |
|
--per_device_train_batch_size 2 |
|
--learning_rate 3e-3 |
|
""".split() |
|
) |
|
|
|
if do_eval: |
|
actions += 1 |
|
args.extend( |
|
""" |
|
--do_eval |
|
--max_eval_samples 16 |
|
--per_device_eval_batch_size 2 |
|
""".split() |
|
) |
|
|
|
assert actions > 0, "need at least do_train or do_eval for the test to run" |
|
|
|
if extra_args_str is not None: |
|
args.extend(extra_args_str.split()) |
|
|
|
|
|
if remove_args_str is not None: |
|
remove_args = remove_args_str.split() |
|
args = [x for x in args if x not in remove_args] |
|
|
|
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split() |
|
script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"] |
|
launcher = get_launcher(distributed) |
|
|
|
cmd = launcher + script + args + ds_args |
|
|
|
|
|
execute_subprocess_async(cmd, env=self.get_env()) |
|
|
|
return output_dir |
|
|
|
@parameterized.expand(params, name_func=parameterized_custom_name_func) |
|
def test_clm(self, stage, dtype): |
|
|
|
|
|
|
|
data_dir = self.tests_dir / "fixtures" |
|
output_dir = self.get_auto_remove_tmp_dir() |
|
args = f""" |
|
--model_name_or_path {GPT2_TINY} |
|
--train_file {data_dir}/sample_text.txt |
|
--validation_file {data_dir}/sample_text.txt |
|
--output_dir {output_dir} |
|
--overwrite_output_dir |
|
--do_train |
|
--do_eval |
|
--max_train_samples 16 |
|
--max_eval_samples 16 |
|
--per_device_train_batch_size 2 |
|
--per_device_eval_batch_size 2 |
|
--num_train_epochs 1 |
|
--warmup_steps 8 |
|
--block_size 64 |
|
--report_to none |
|
""".split() |
|
|
|
args.extend([f"--{dtype}"]) |
|
|
|
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split() |
|
script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"] |
|
launcher = get_launcher(distributed=True) |
|
|
|
cmd = launcher + script + args + ds_args |
|
|
|
|
|
execute_subprocess_async(cmd, env=self.get_env()) |
|
|
|
def test_clm_from_config_zero3_fp16(self): |
|
|
|
|
|
data_dir = self.tests_dir / "fixtures" |
|
output_dir = self.get_auto_remove_tmp_dir() |
|
args = f""" |
|
--model_type gpt2 |
|
--tokenizer_name {GPT2_TINY} |
|
--train_file {data_dir}/sample_text.txt |
|
--validation_file {data_dir}/sample_text.txt |
|
--output_dir {output_dir} |
|
--overwrite_output_dir |
|
--do_train |
|
--max_train_samples 4 |
|
--per_device_train_batch_size 2 |
|
--num_train_epochs 1 |
|
--warmup_steps 8 |
|
--block_size 8 |
|
--fp16 |
|
--report_to none |
|
""".split() |
|
|
|
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_zero3.json".split() |
|
script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"] |
|
launcher = get_launcher(distributed=True) |
|
|
|
cmd = launcher + script + args + ds_args |
|
|
|
|
|
with CaptureStderr() as cs: |
|
execute_subprocess_async(cmd, env=self.get_env()) |
|
self.assertIn("Detected DeepSpeed ZeRO-3", cs.err) |
|
|