Aston-xMAD's picture
init commit
9382e3f verified
raw
history blame
10.8 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utility that checks the big table in the file docs/source/en/index.md and potentially updates it.
Use from the root of the repo with:
```bash
python utils/check_inits.py
```
for a check that will error in case of inconsistencies (used by `make repo-consistency`).
To auto-fix issues run:
```bash
python utils/check_inits.py --fix_and_overwrite
```
which is used by `make fix-copies`.
"""
import argparse
import collections
import os
import re
from typing import List
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
TRANSFORMERS_PATH = "src/transformers"
PATH_TO_DOCS = "docs/source/en"
REPO_PATH = "."
def _find_text_in_file(filename: str, start_prompt: str, end_prompt: str) -> str:
"""
Find the text in filename between two prompts.
Args:
filename (`str`): The file to search into.
start_prompt (`str`): A string to look for at the start of the content searched.
end_prompt (`str`): A string that will mark the end of the content to look for.
Returns:
`str`: The content between the prompts.
"""
with open(filename, "r", encoding="utf-8", newline="\n") as f:
lines = f.readlines()
# Find the start prompt.
start_index = 0
while not lines[start_index].startswith(start_prompt):
start_index += 1
start_index += 1
# Now go until the end prompt.
end_index = start_index
while not lines[end_index].startswith(end_prompt):
end_index += 1
end_index -= 1
while len(lines[start_index]) <= 1:
start_index += 1
while len(lines[end_index]) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index]), start_index, end_index, lines
# Regexes that match TF/Flax/PT model names. Add here suffixes that are used to identify models, separated by |
_re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
_re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch after the two previous regexes.
_re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the transformers module imported is the one in the repo.
transformers_module = direct_transformers_import(TRANSFORMERS_PATH)
def camel_case_split(identifier: str) -> List[str]:
"""
Split a camel-cased name into words.
Args:
identifier (`str`): The camel-cased name to parse.
Returns:
`List[str]`: The list of words in the identifier (as seprated by capital letters).
Example:
```py
>>> camel_case_split("CamelCasedClass")
["Camel", "Cased", "Class"]
```
"""
# Regex thanks to https://stackoverflow.com/questions/29916065/how-to-do-camelcase-split-in-python
matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier)
return [m.group(0) for m in matches]
def _center_text(text: str, width: int) -> str:
"""
Utility that will add spaces on the left and right of a text to make it centered for a given width.
Args:
text (`str`): The text to center.
width (`int`): The desired length of the result.
Returns:
`str`: A text of length `width` with the original `text` in the middle.
"""
text_length = 2 if text == "✅" or text == "❌" else len(text)
left_indent = (width - text_length) // 2
right_indent = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
SPECIAL_MODEL_NAME_LINK_MAPPING = {
"Data2VecAudio": "[Data2VecAudio](model_doc/data2vec)",
"Data2VecText": "[Data2VecText](model_doc/data2vec)",
"Data2VecVision": "[Data2VecVision](model_doc/data2vec)",
"DonutSwin": "[DonutSwin](model_doc/donut)",
}
MODEL_NAMES_WITH_SAME_CONFIG = {
"BARThez": "BART",
"BARTpho": "BART",
"BertJapanese": "BERT",
"BERTweet": "BERT",
"BORT": "BERT",
"ByT5": "T5",
"CPM": "OpenAI GPT-2",
"DePlot": "Pix2Struct",
"DialoGPT": "OpenAI GPT-2",
"DiT": "BEiT",
"FLAN-T5": "T5",
"FLAN-UL2": "T5",
"HerBERT": "BERT",
"LayoutXLM": "LayoutLMv2",
"Llama2": "LLaMA",
"Llama3": "LLaMA",
"MADLAD-400": "T5",
"MatCha": "Pix2Struct",
"mBART-50": "mBART",
"Megatron-GPT2": "OpenAI GPT-2",
"mLUKE": "LUKE",
"MMS": "Wav2Vec2",
"NLLB": "M2M100",
"PhoBERT": "BERT",
"T5v1.1": "T5",
"TAPEX": "BART",
"UL2": "T5",
"Wav2Vec2Phoneme": "Wav2Vec2",
"XLM-V": "XLM-RoBERTa",
"XLS-R": "Wav2Vec2",
"XLSR-Wav2Vec2": "Wav2Vec2",
}
MODEL_NAMES_TO_IGNORE = ["CLIPVisionModel", "SiglipVisionModel", "ChineseCLIPVisionModel"]
def get_model_table_from_auto_modules() -> str:
"""
Generates an up-to-date model table from the content of the auto modules.
"""
# Dictionary model names to config.
config_maping_names = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
model_name_to_config = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
model_name_to_prefix = {name: config.replace("Config", "") for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
pt_models = collections.defaultdict(bool)
tf_models = collections.defaultdict(bool)
flax_models = collections.defaultdict(bool)
# Let's lookup through all transformers object (once).
for attr_name in dir(transformers_module):
lookup_dict = None
if _re_tf_models.match(attr_name) is not None:
lookup_dict = tf_models
attr_name = _re_tf_models.match(attr_name).groups()[0]
elif _re_flax_models.match(attr_name) is not None:
lookup_dict = flax_models
attr_name = _re_flax_models.match(attr_name).groups()[0]
elif _re_pt_models.match(attr_name) is not None:
lookup_dict = pt_models
attr_name = _re_pt_models.match(attr_name).groups()[0]
if lookup_dict is not None:
while len(attr_name) > 0:
if attr_name in model_name_to_prefix.values():
lookup_dict[attr_name] = True
break
# Try again after removing the last word in the name
attr_name = "".join(camel_case_split(attr_name)[:-1])
# Let's build that table!
model_names = list(model_name_to_config.keys()) + list(MODEL_NAMES_WITH_SAME_CONFIG.keys())
# model name to doc link mapping
model_names_mapping = transformers_module.models.auto.configuration_auto.MODEL_NAMES_MAPPING
model_name_to_link_mapping = {value: f"[{value}](model_doc/{key})" for key, value in model_names_mapping.items()}
# update mapping with special model names
model_name_to_link_mapping = {
k: SPECIAL_MODEL_NAME_LINK_MAPPING[k] if k in SPECIAL_MODEL_NAME_LINK_MAPPING else v
for k, v in model_name_to_link_mapping.items()
}
# MaskFormerSwin and TimmBackbone are backbones and so not meant to be loaded and used on their own. Instead, they define architectures which can be loaded using the AutoBackbone API.
names_to_exclude = ["MaskFormerSwin", "TimmBackbone", "Speech2Text2"]
model_names = [name for name in model_names if name not in names_to_exclude]
model_names.sort(key=str.lower)
columns = ["Model", "PyTorch support", "TensorFlow support", "Flax Support"]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
widths = [len(c) + 2 for c in columns]
widths[0] = max([len(doc_link) for doc_link in model_name_to_link_mapping.values()]) + 2
# Build the table per se
table = "|" + "|".join([_center_text(c, w) for c, w in zip(columns, widths)]) + "|\n"
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths]) + "|\n"
check = {True: "✅", False: "❌"}
for name in model_names:
if name in MODEL_NAMES_TO_IGNORE:
continue
if name in MODEL_NAMES_WITH_SAME_CONFIG.keys():
prefix = model_name_to_prefix[MODEL_NAMES_WITH_SAME_CONFIG[name]]
else:
prefix = model_name_to_prefix[name]
line = [
model_name_to_link_mapping[name],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(l, w) for l, w in zip(line, widths)]) + "|\n"
return table
def check_model_table(overwrite=False):
"""
Check the model table in the index.md is consistent with the state of the lib and potentially fix it.
Args:
overwrite (`bool`, *optional*, defaults to `False`):
Whether or not to overwrite the table when it's not up to date.
"""
current_table, start_index, end_index, lines = _find_text_in_file(
filename=os.path.join(PATH_TO_DOCS, "index.md"),
start_prompt="<!--This table is updated automatically from the auto modules",
end_prompt="<!-- End table-->",
)
new_table = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(PATH_TO_DOCS, "index.md"), "w", encoding="utf-8", newline="\n") as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:])
else:
raise ValueError(
"The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this."
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
args = parser.parse_args()
check_model_table(args.fix_and_overwrite)