|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import itertools |
|
import os |
|
import unittest |
|
from copy import deepcopy |
|
from functools import partial |
|
|
|
from parameterized import parameterized |
|
|
|
import tests.trainer.test_trainer |
|
from tests.trainer.test_trainer import TrainerIntegrationCommon |
|
from transformers import is_torch_available |
|
from transformers.testing_utils import ( |
|
TestCasePlus, |
|
backend_device_count, |
|
execute_subprocess_async, |
|
mockenv_context, |
|
require_accelerate, |
|
require_fsdp, |
|
require_torch_accelerator, |
|
require_torch_multi_accelerator, |
|
slow, |
|
torch_device, |
|
) |
|
from transformers.trainer_callback import TrainerState |
|
from transformers.trainer_utils import FSDPOption, set_seed |
|
from transformers.utils import is_accelerate_available, is_torch_bf16_available_on_device |
|
|
|
|
|
if is_torch_available(): |
|
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_1 |
|
from transformers.trainer import FSDP_MODEL_NAME |
|
else: |
|
is_torch_greater_or_equal_than_2_1 = False |
|
|
|
|
|
DEFAULT_MASTER_PORT = "10999" |
|
dtypes = ["fp16"] |
|
if is_torch_bf16_available_on_device(torch_device): |
|
dtypes += ["bf16"] |
|
sharding_strategies = ["full_shard", "shard_grad_op"] |
|
state_dict_types = ["FULL_STATE_DICT", "SHARDED_STATE_DICT"] |
|
set_seed(42) |
|
params = list(itertools.product(sharding_strategies, dtypes)) |
|
|
|
|
|
def get_master_port(real_launcher=False): |
|
""" |
|
When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed) |
|
the issue is that once the port is tied it can't be used anywhere else outside of this process, |
|
since torch.dist doesn't free the port until the process exits. Therefore for the sake of being |
|
able to run both emulated launcher and normal launcher tests we need 2 distinct ports. |
|
|
|
This function will give the right port in the right context. For real launcher it'll give the |
|
base port, for emulated launcher it'll give the base port + 1. In both cases a string is |
|
returned. |
|
|
|
Args: |
|
`real_launcher`: whether a real launcher is going to be used, or the emulated one |
|
|
|
""" |
|
|
|
master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT) |
|
if not real_launcher: |
|
master_port_base = str(int(master_port_base) + 1) |
|
return master_port_base |
|
|
|
|
|
if is_torch_available(): |
|
from tests.trainer.test_trainer import ( |
|
RegressionModelConfig, |
|
RegressionPreTrainedModel, |
|
) |
|
|
|
|
|
get_regression_trainer = partial(tests.trainer.test_trainer.get_regression_trainer, log_level="info") |
|
|
|
require_fsdp_version = require_fsdp |
|
if is_accelerate_available(): |
|
from accelerate.utils.constants import ( |
|
FSDP_PYTORCH_VERSION, |
|
FSDP_SHARDING_STRATEGY, |
|
) |
|
|
|
require_fsdp_version = partial(require_fsdp, min_version=FSDP_PYTORCH_VERSION) |
|
|
|
|
|
def get_launcher(distributed=False, use_accelerate=False): |
|
|
|
|
|
|
|
|
|
num_gpus = min(2, backend_device_count(torch_device)) if distributed else 1 |
|
master_port = get_master_port(real_launcher=True) |
|
if use_accelerate: |
|
return f"""accelerate launch |
|
--num_processes {num_gpus} |
|
--main_process_port {master_port} |
|
--use_fsdp |
|
--fsdp_auto_wrap_policy TRANSFORMER_BASED_WRAP |
|
--fsdp_state_dict_type SHARDED_STATE_DICT |
|
--fsdp_transformer_layer_cls_to_wrap BertLayer""".split() |
|
return f"torchrun --nnodes 1 --nproc-per-node {num_gpus} --master-port {master_port}".split() |
|
|
|
|
|
def _parameterized_custom_name_func(func, param_num, param): |
|
|
|
|
|
param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args)) |
|
return f"{func.__name__}_{param_based_name}" |
|
|
|
|
|
@require_accelerate |
|
@require_torch_accelerator |
|
@require_fsdp_version |
|
class TrainerIntegrationFSDP(TestCasePlus, TrainerIntegrationCommon): |
|
def setUp(self): |
|
super().setUp() |
|
master_port = get_master_port(real_launcher=False) |
|
self.dist_env_1_gpu = { |
|
"MASTER_ADDR": "localhost", |
|
"MASTER_PORT": master_port, |
|
"RANK": "0", |
|
"LOCAL_RANK": "0", |
|
"WORLD_SIZE": "1", |
|
} |
|
|
|
self.fsdp_config = { |
|
"backward_prefetch": "backward_pre", |
|
"forward_prefetch": "False", |
|
"limit_all_gathers": "False", |
|
"use_orig_params": "True", |
|
"sync_module_states": "True", |
|
"cpu_ram_efficient_loading": "True", |
|
"activation_checkpointing": "False", |
|
"min_num_params": 1, |
|
} |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
|
|
@parameterized.expand(params, name_func=_parameterized_custom_name_func) |
|
def test_fsdp_config(self, sharding_strategy, dtype): |
|
output_dir = self.get_auto_remove_tmp_dir() |
|
kwargs = { |
|
"output_dir": output_dir, |
|
"train_len": 128, |
|
"save_steps": 5, |
|
"learning_rate": 0.1, |
|
"fsdp": f"{sharding_strategy} offload auto_wrap", |
|
"fsdp_config": self.fsdp_config, |
|
} |
|
kwargs[dtype] = True |
|
with mockenv_context(**self.dist_env_1_gpu): |
|
trainer = get_regression_trainer(**kwargs) |
|
self.assertEqual(trainer.args.fsdp[0], sharding_strategy) |
|
self.assertEqual(trainer.args.fsdp[1], FSDPOption.OFFLOAD) |
|
self.assertEqual(trainer.args.fsdp[2], FSDPOption.AUTO_WRAP) |
|
for k, v in trainer.args.fsdp_config.items(): |
|
self.assertEqual(v, self.fsdp_config[k]) |
|
self.assertEqual(os.environ.get("ACCELERATE_USE_FSDP", "false"), "true") |
|
|
|
@parameterized.expand(params, name_func=_parameterized_custom_name_func) |
|
def test_fsdp_config_transformers_auto_wrap(self, sharding_strategy, dtype): |
|
output_dir = self.get_auto_remove_tmp_dir() |
|
fsdp_config = deepcopy(self.fsdp_config) |
|
del fsdp_config["min_num_params"] |
|
fsdp_config["transformer_layer_cls_to_wrap"] = "BertLayer" |
|
kwargs = { |
|
"output_dir": output_dir, |
|
"train_len": 128, |
|
"save_steps": 5, |
|
"learning_rate": 0.1, |
|
"fsdp": f"{sharding_strategy} offload auto_wrap", |
|
"fsdp_config": fsdp_config, |
|
} |
|
kwargs[dtype] = True |
|
prefix = "FSDP_" |
|
with mockenv_context(**self.dist_env_1_gpu): |
|
trainer = get_regression_trainer(**kwargs) |
|
self.assertEqual(trainer.args.fsdp[0], sharding_strategy) |
|
self.assertEqual(trainer.args.fsdp[1], FSDPOption.OFFLOAD) |
|
self.assertEqual(trainer.args.fsdp[2], FSDPOption.AUTO_WRAP) |
|
fsdp_sharding_strategy = ( |
|
str(FSDP_SHARDING_STRATEGY.index(sharding_strategy.upper()) + 1) |
|
if is_accelerate_available("0.26.0") |
|
else sharding_strategy.upper() |
|
) |
|
self.assertEqual(os.environ[f"{prefix}SHARDING_STRATEGY"], fsdp_sharding_strategy) |
|
self.assertEqual(os.environ[f"{prefix}OFFLOAD_PARAMS"], "true") |
|
self.assertEqual(os.environ[f"{prefix}AUTO_WRAP_POLICY"], "TRANSFORMER_BASED_WRAP") |
|
self.assertEqual( |
|
os.environ[f"{prefix}TRANSFORMER_CLS_TO_WRAP"], ",".join(fsdp_config["transformer_layer_cls_to_wrap"]) |
|
) |
|
self.assertEqual(os.environ[f"{prefix}BACKWARD_PREFETCH"], fsdp_config["backward_prefetch"].upper()) |
|
self.assertEqual(os.environ[f"{prefix}FORWARD_PREFETCH"], fsdp_config["forward_prefetch"]) |
|
self.assertEqual(os.environ[f"{prefix}USE_ORIG_PARAMS"], fsdp_config["use_orig_params"]) |
|
self.assertEqual(os.environ[f"{prefix}SYNC_MODULE_STATES"], fsdp_config["sync_module_states"]) |
|
self.assertEqual( |
|
os.environ[f"{prefix}CPU_RAM_EFFICIENT_LOADING"], fsdp_config["cpu_ram_efficient_loading"] |
|
) |
|
self.assertEqual(os.environ.get("ACCELERATE_USE_FSDP", "false"), "true") |
|
|
|
@parameterized.expand(params, name_func=_parameterized_custom_name_func) |
|
@require_torch_multi_accelerator |
|
@slow |
|
def test_basic_run(self, sharding_strategy, dtype): |
|
launcher = get_launcher(distributed=True, use_accelerate=False) |
|
output_dir = self.get_auto_remove_tmp_dir() |
|
args = self.get_base_args(output_dir, 1, 50).split() + [f"--{dtype}"] |
|
fsdp_args = ["--fsdp", f"{sharding_strategy} auto_wrap", "--fsdp_transformer_layer_cls_to_wrap", "BertLayer"] |
|
script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"] |
|
cmd = launcher + script + args + fsdp_args |
|
execute_subprocess_async(cmd, env=self.get_env()) |
|
|
|
@parameterized.expand(dtypes) |
|
@require_torch_multi_accelerator |
|
@slow |
|
@unittest.skipIf(not is_torch_greater_or_equal_than_2_1, reason="This test on pytorch 2.0 takes 4 hours.") |
|
def test_basic_run_with_cpu_offload(self, dtype): |
|
launcher = get_launcher(distributed=True, use_accelerate=False) |
|
output_dir = self.get_auto_remove_tmp_dir() |
|
args = self.get_base_args(output_dir, 1, 50).split() + [f"--{dtype}", "--max_steps", "10"] |
|
fsdp_args = ["--fsdp", "full_shard auto_wrap offload", "--fsdp_transformer_layer_cls_to_wrap", "BertLayer"] |
|
script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"] |
|
cmd = launcher + script + args + fsdp_args |
|
execute_subprocess_async(cmd, env=self.get_env()) |
|
|
|
@parameterized.expand(state_dict_types, name_func=_parameterized_custom_name_func) |
|
@require_torch_multi_accelerator |
|
@slow |
|
def test_training_and_can_resume_normally(self, state_dict_type): |
|
output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False) |
|
|
|
sharding_strategy = "full_shard" |
|
use_accelerate = state_dict_type == "SHARDED_STATE_DICT" |
|
launcher = get_launcher(True, use_accelerate=use_accelerate) |
|
args = self.get_base_args(output_dir, 2, 25).split() |
|
script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"] |
|
logs = self.run_cmd_and_get_logs(use_accelerate, sharding_strategy, launcher, script, args, output_dir) |
|
|
|
|
|
checkpoint = os.path.join(output_dir, "checkpoint-115") |
|
resume_args = args + f"--resume_from_checkpoint {checkpoint}".split() |
|
|
|
is_fsdp_ckpt = os.path.isdir(checkpoint) and ( |
|
|
|
any( |
|
FSDP_MODEL_NAME in folder_name |
|
for folder_name in os.listdir(checkpoint) |
|
if os.path.isdir(os.path.join(checkpoint, folder_name)) |
|
) |
|
|
|
or os.path.isfile(os.path.join(checkpoint, f"{FSDP_MODEL_NAME}.bin")) |
|
) |
|
self.assertTrue(is_fsdp_ckpt) |
|
|
|
logs_resume = self.run_cmd_and_get_logs( |
|
use_accelerate, sharding_strategy, launcher, script, resume_args, output_dir |
|
) |
|
|
|
for log, log1 in zip(logs, logs_resume): |
|
if "learning_rate" in log: |
|
self.assertAlmostEqual(log["learning_rate"], log1["learning_rate"], delta=1e-5) |
|
|
|
def run_cmd_and_get_logs(self, use_accelerate, sharding_strategy, launcher, script, args, output_dir): |
|
if not use_accelerate: |
|
fsdp_args = [ |
|
"--fsdp", |
|
f"{sharding_strategy} auto_wrap", |
|
"--fsdp_transformer_layer_cls_to_wrap", |
|
"BertLayer", |
|
] |
|
cmd = launcher + script + args + fsdp_args |
|
else: |
|
fsdp_config = f""" |
|
--fsdp_sharding_strategy {FSDP_SHARDING_STRATEGY.index(sharding_strategy.upper()) + 1} |
|
""".split() |
|
cmd = launcher + fsdp_config + script + args |
|
|
|
|
|
|
|
execute_subprocess_async(cmd, env=self.get_env()) |
|
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history |
|
return logs |
|
|
|
def get_base_args(self, output_dir, num_epochs, logging_steps): |
|
return f""" |
|
--model_name_or_path google-bert/bert-base-cased |
|
--task_name mrpc |
|
--output_dir {output_dir} |
|
--overwrite_output_dir |
|
--do_train |
|
--max_seq_length 128 |
|
--per_device_train_batch_size 16 |
|
--learning_rate 5e-5 |
|
--num_train_epochs {num_epochs} |
|
--lr_scheduler_type cosine |
|
--logging_steps {logging_steps} |
|
--save_strategy epoch |
|
--do_eval |
|
--eval_strategy epoch |
|
--report_to none |
|
""" |
|
|