Spaces:
Running
Running
import logging | |
import time | |
import click | |
from celery import shared_task | |
from werkzeug.exceptions import NotFound | |
from core.rag.datasource.vdb.vector_factory import Vector | |
from core.rag.models.document import Document | |
from extensions.ext_database import db | |
from extensions.ext_redis import redis_client | |
from models.dataset import Dataset | |
from models.model import App, AppAnnotationSetting, MessageAnnotation | |
from services.dataset_service import DatasetCollectionBindingService | |
def batch_import_annotations_task(job_id: str, content_list: list[dict], app_id: str, tenant_id: str, | |
user_id: str): | |
""" | |
Add annotation to index. | |
:param job_id: job_id | |
:param content_list: content list | |
:param tenant_id: tenant id | |
:param app_id: app id | |
:param user_id: user_id | |
""" | |
logging.info(click.style('Start batch import annotation: {}'.format(job_id), fg='green')) | |
start_at = time.perf_counter() | |
indexing_cache_key = 'app_annotation_batch_import_{}'.format(str(job_id)) | |
# get app info | |
app = db.session.query(App).filter( | |
App.id == app_id, | |
App.tenant_id == tenant_id, | |
App.status == 'normal' | |
).first() | |
if app: | |
try: | |
documents = [] | |
for content in content_list: | |
annotation = MessageAnnotation( | |
app_id=app.id, | |
content=content['answer'], | |
question=content['question'], | |
account_id=user_id | |
) | |
db.session.add(annotation) | |
db.session.flush() | |
document = Document( | |
page_content=content['question'], | |
metadata={ | |
"annotation_id": annotation.id, | |
"app_id": app_id, | |
"doc_id": annotation.id | |
} | |
) | |
documents.append(document) | |
# if annotation reply is enabled , batch add annotations' index | |
app_annotation_setting = db.session.query(AppAnnotationSetting).filter( | |
AppAnnotationSetting.app_id == app_id | |
).first() | |
if app_annotation_setting: | |
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type( | |
app_annotation_setting.collection_binding_id, | |
'annotation' | |
) | |
if not dataset_collection_binding: | |
raise NotFound("App annotation setting not found") | |
dataset = Dataset( | |
id=app_id, | |
tenant_id=tenant_id, | |
indexing_technique='high_quality', | |
embedding_model_provider=dataset_collection_binding.provider_name, | |
embedding_model=dataset_collection_binding.model_name, | |
collection_binding_id=dataset_collection_binding.id | |
) | |
vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id']) | |
vector.create(documents, duplicate_check=True) | |
db.session.commit() | |
redis_client.setex(indexing_cache_key, 600, 'completed') | |
end_at = time.perf_counter() | |
logging.info( | |
click.style( | |
'Build index successful for batch import annotation: {} latency: {}'.format(job_id, end_at - start_at), | |
fg='green')) | |
except Exception as e: | |
db.session.rollback() | |
redis_client.setex(indexing_cache_key, 600, 'error') | |
indexing_error_msg_key = 'app_annotation_batch_import_error_msg_{}'.format(str(job_id)) | |
redis_client.setex(indexing_error_msg_key, 600, str(e)) | |
logging.exception("Build index for batch import annotations failed") | |