Spaces:
Paused
Paused
| import logging | |
| import time | |
| import click | |
| from celery import shared_task | |
| from werkzeug.exceptions import NotFound | |
| from core.rag.datasource.vdb.vector_factory import Vector | |
| from core.rag.models.document import Document | |
| from extensions.ext_database import db | |
| from extensions.ext_redis import redis_client | |
| from models.dataset import Dataset | |
| from models.model import App, AppAnnotationSetting, MessageAnnotation | |
| from services.dataset_service import DatasetCollectionBindingService | |
| def batch_import_annotations_task(job_id: str, content_list: list[dict], app_id: str, tenant_id: str, | |
| user_id: str): | |
| """ | |
| Add annotation to index. | |
| :param job_id: job_id | |
| :param content_list: content list | |
| :param tenant_id: tenant id | |
| :param app_id: app id | |
| :param user_id: user_id | |
| """ | |
| logging.info(click.style('Start batch import annotation: {}'.format(job_id), fg='green')) | |
| start_at = time.perf_counter() | |
| indexing_cache_key = 'app_annotation_batch_import_{}'.format(str(job_id)) | |
| # get app info | |
| app = db.session.query(App).filter( | |
| App.id == app_id, | |
| App.tenant_id == tenant_id, | |
| App.status == 'normal' | |
| ).first() | |
| if app: | |
| try: | |
| documents = [] | |
| for content in content_list: | |
| annotation = MessageAnnotation( | |
| app_id=app.id, | |
| content=content['answer'], | |
| question=content['question'], | |
| account_id=user_id | |
| ) | |
| db.session.add(annotation) | |
| db.session.flush() | |
| document = Document( | |
| page_content=content['question'], | |
| metadata={ | |
| "annotation_id": annotation.id, | |
| "app_id": app_id, | |
| "doc_id": annotation.id | |
| } | |
| ) | |
| documents.append(document) | |
| # if annotation reply is enabled , batch add annotations' index | |
| app_annotation_setting = db.session.query(AppAnnotationSetting).filter( | |
| AppAnnotationSetting.app_id == app_id | |
| ).first() | |
| if app_annotation_setting: | |
| dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type( | |
| app_annotation_setting.collection_binding_id, | |
| 'annotation' | |
| ) | |
| if not dataset_collection_binding: | |
| raise NotFound("App annotation setting not found") | |
| dataset = Dataset( | |
| id=app_id, | |
| tenant_id=tenant_id, | |
| indexing_technique='high_quality', | |
| embedding_model_provider=dataset_collection_binding.provider_name, | |
| embedding_model=dataset_collection_binding.model_name, | |
| collection_binding_id=dataset_collection_binding.id | |
| ) | |
| vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id']) | |
| vector.create(documents, duplicate_check=True) | |
| db.session.commit() | |
| redis_client.setex(indexing_cache_key, 600, 'completed') | |
| end_at = time.perf_counter() | |
| logging.info( | |
| click.style( | |
| 'Build index successful for batch import annotation: {} latency: {}'.format(job_id, end_at - start_at), | |
| fg='green')) | |
| except Exception as e: | |
| db.session.rollback() | |
| redis_client.setex(indexing_cache_key, 600, 'error') | |
| indexing_error_msg_key = 'app_annotation_batch_import_error_msg_{}'.format(str(job_id)) | |
| redis_client.setex(indexing_error_msg_key, 600, str(e)) | |
| logging.exception("Build index for batch import annotations failed") | |