AutoLink / app.py
xingzhehe's picture
cache examples
f226284
from models.model import Model as AutoLink
import gradio as gr
import PIL
import torch
import os
import imageio
import numpy as np
device = 'cuda' if torch.cuda.is_available() else 'cpu'
autolink = AutoLink.load_from_checkpoint(os.path.join("checkpoints", "celeba_wild_k32_m0.8_b16_t0.00075_sklr512", "model.ckpt"))
autolink.to(device)
def predict_image(image_in: PIL.Image.Image) -> PIL.Image.Image:
if image_in == None:
raise gr.Error("Please upload a video or image.")
edge_map = autolink(image_in)
return edge_map
def predict_video(video_in: str) -> str:
if video_in == None:
raise gr.Error("Please upload a video or image.")
video_out = video_in[:-4] + '_out.mp4'
video_in = imageio.get_reader(video_in)
writer = imageio.get_writer(video_out, mode='I', fps=video_in.get_meta_data()['fps'])
for image_in in video_in:
image_in = PIL.Image.fromarray(image_in)
edge_map = autolink(image_in)
writer.append_data(np.array(edge_map))
writer.close()
return video_out
with gr.Blocks() as blocks:
gr.Markdown("""
# AutoLink
## Self-supervised Learning of Human Skeletons and Object Outlines by Linking Keypoints
## This demo is specifically for self-supervised facial landmark detection
#### Note that there is no face detection in this demo, so please make sure that the face is center-around in the image.
* [Paper](https://arxiv.org/abs/2205.10636)
* [Project Page](https://xingzhehe.github.io/autolink/)
* [GitHub](https://github.com/xingzhehe/AutoLink-Self-supervised-Learning-of-Human-Skeletons-and-Object-Outlines-by-Linking-Keypoints)
""")
with gr.Tab("Image"):
with gr.Row():
with gr.Column():
image_in = gr.Image(source="upload", type="pil", visible=True)
with gr.Column():
image_out = gr.Image()
run_btn = gr.Button("Run")
run_btn.click(fn=predict_image, inputs=[image_in], outputs=[image_out])
gr.Examples(fn=predict_image, examples=[["assets/jackie_chan.jpg", None]],
inputs=[image_in], outputs=[image_out],
cache_examples=True)
with gr.Tab("Video") as tab:
with gr.Row():
with gr.Column():
video_in = gr.Video(source="upload", type="mp4")
with gr.Column():
video_out = gr.Video()
run_btn = gr.Button("Run")
run_btn.click(fn=predict_video, inputs=[video_in], outputs=[video_out])
gr.Examples(fn=predict_video, examples=[["assets/00344.mp4"],],
inputs=[video_in], outputs=[video_out],
cache_examples=True)
blocks.launch()