Spaces:
Paused
Paused
Update
Browse files- .gitmodules +0 -3
- DeepDanbooru +0 -1
- app.py +32 -40
- requirements.txt +1 -0
.gitmodules
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
[submodule "DeepDanbooru"]
|
2 |
-
path = DeepDanbooru
|
3 |
-
url = https://github.com/KichangKim/DeepDanbooru
|
|
|
|
|
|
|
|
DeepDanbooru
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
Subproject commit 92ba0b56be5eed0037e3f067bb9867f5ac691647
|
|
|
|
app.py
CHANGED
@@ -7,19 +7,12 @@ import functools
|
|
7 |
import os
|
8 |
import pathlib
|
9 |
import subprocess
|
10 |
-
import
|
11 |
-
import urllib
|
12 |
-
import zipfile
|
13 |
-
from typing import Callable
|
14 |
|
15 |
# workaround for https://github.com/gradio-app/gradio/issues/483
|
16 |
command = 'pip install -U gradio==2.7.0'
|
17 |
subprocess.call(command.split())
|
18 |
|
19 |
-
command = 'pip install -r DeepDanbooru/requirements.txt'
|
20 |
-
subprocess.call(command.split())
|
21 |
-
sys.path.insert(0, 'DeepDanbooru')
|
22 |
-
|
23 |
import deepdanbooru as dd
|
24 |
import gradio as gr
|
25 |
import huggingface_hub
|
@@ -29,9 +22,9 @@ import tensorflow as tf
|
|
29 |
|
30 |
TOKEN = os.environ['TOKEN']
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
|
37 |
def parse_args() -> argparse.Namespace:
|
@@ -50,33 +43,38 @@ def parse_args() -> argparse.Namespace:
|
|
50 |
return parser.parse_args()
|
51 |
|
52 |
|
53 |
-
def
|
54 |
-
image_dir = pathlib.Path('
|
55 |
-
image_dir.
|
56 |
-
|
57 |
-
dataset_repo = 'hysts/sample-images-TADNE'
|
58 |
-
n_images = 36
|
59 |
-
paths = []
|
60 |
-
for index in range(n_images):
|
61 |
path = huggingface_hub.hf_hub_download(dataset_repo,
|
62 |
-
|
63 |
repo_type='dataset',
|
64 |
-
cache_dir=image_dir.as_posix(),
|
65 |
use_auth_token=TOKEN)
|
66 |
-
|
67 |
-
|
|
|
68 |
|
69 |
|
70 |
-
def
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
|
78 |
-
def
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
_, height, width, _ = model.input_shape
|
81 |
image = np.asarray(image)
|
82 |
image = tf.image.resize(image,
|
@@ -101,18 +99,12 @@ def main():
|
|
101 |
|
102 |
args = parse_args()
|
103 |
|
104 |
-
image_paths =
|
105 |
examples = [[path.as_posix(), args.score_threshold]
|
106 |
for path in image_paths]
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
download_model_data()
|
111 |
-
|
112 |
-
model = tf.keras.models.load_model(MODEL_PATH)
|
113 |
-
|
114 |
-
with open(TAG_PATH) as f:
|
115 |
-
labels = [line.strip() for line in f.readlines()]
|
116 |
|
117 |
func = functools.partial(predict, model=model, labels=labels)
|
118 |
func = functools.update_wrapper(func, predict)
|
|
|
7 |
import os
|
8 |
import pathlib
|
9 |
import subprocess
|
10 |
+
import tarfile
|
|
|
|
|
|
|
11 |
|
12 |
# workaround for https://github.com/gradio-app/gradio/issues/483
|
13 |
command = 'pip install -U gradio==2.7.0'
|
14 |
subprocess.call(command.split())
|
15 |
|
|
|
|
|
|
|
|
|
16 |
import deepdanbooru as dd
|
17 |
import gradio as gr
|
18 |
import huggingface_hub
|
|
|
22 |
|
23 |
TOKEN = os.environ['TOKEN']
|
24 |
|
25 |
+
MODEL_REPO = 'hysts/DeepDanbooru'
|
26 |
+
MODEL_FILENAME = 'model-resnet_custom_v3.h5'
|
27 |
+
LABEL_FILENAME = 'tags.txt'
|
28 |
|
29 |
|
30 |
def parse_args() -> argparse.Namespace:
|
|
|
43 |
return parser.parse_args()
|
44 |
|
45 |
|
46 |
+
def load_sample_image_paths() -> list[pathlib.Path]:
|
47 |
+
image_dir = pathlib.Path('images')
|
48 |
+
if not image_dir.exists():
|
49 |
+
dataset_repo = 'hysts/sample-images-TADNE'
|
|
|
|
|
|
|
|
|
50 |
path = huggingface_hub.hf_hub_download(dataset_repo,
|
51 |
+
'images.tar.gz',
|
52 |
repo_type='dataset',
|
|
|
53 |
use_auth_token=TOKEN)
|
54 |
+
with tarfile.open(path) as f:
|
55 |
+
f.extractall()
|
56 |
+
return sorted(image_dir.glob('*'))
|
57 |
|
58 |
|
59 |
+
def load_model() -> tf.keras.Model:
|
60 |
+
path = huggingface_hub.hf_hub_download(MODEL_REPO,
|
61 |
+
MODEL_FILENAME,
|
62 |
+
use_auth_token=TOKEN)
|
63 |
+
model = tf.keras.models.load_model(path)
|
64 |
+
return model
|
65 |
|
66 |
|
67 |
+
def load_labels() -> list[str]:
|
68 |
+
path = huggingface_hub.hf_hub_download(MODEL_REPO,
|
69 |
+
LABEL_FILENAME,
|
70 |
+
use_auth_token=TOKEN)
|
71 |
+
with open(path) as f:
|
72 |
+
labels = [line.strip() for line in f.readlines()]
|
73 |
+
return labels
|
74 |
+
|
75 |
+
|
76 |
+
def predict(image: PIL.Image.Image, score_threshold: float,
|
77 |
+
model: tf.keras.Model, labels: list[str]) -> dict[str, float]:
|
78 |
_, height, width, _ = model.input_shape
|
79 |
image = np.asarray(image)
|
80 |
image = tf.image.resize(image,
|
|
|
99 |
|
100 |
args = parse_args()
|
101 |
|
102 |
+
image_paths = load_sample_image_paths()
|
103 |
examples = [[path.as_posix(), args.score_threshold]
|
104 |
for path in image_paths]
|
105 |
|
106 |
+
model = load_model()
|
107 |
+
labels = load_labels()
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
func = functools.partial(predict, model=model, labels=labels)
|
110 |
func = functools.update_wrapper(func, predict)
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
pillow>=9.0.0
|
2 |
tensorflow>=2.7.0
|
|
|
|
1 |
pillow>=9.0.0
|
2 |
tensorflow>=2.7.0
|
3 |
+
git+https://github.com/KichangKim/DeepDanbooru@v3-20200915-sgd-e30#egg=deepdanbooru
|