QinOwen commited on
Commit
5098655
·
1 Parent(s): 2846498

load-base-model-first

Browse files
VADER-VideoCrafter/scripts/main/train_t2v_lora.py CHANGED
@@ -567,7 +567,7 @@ def should_sample(global_step, validation_steps, is_sample_preview):
567
  and is_sample_preview
568
 
569
 
570
- def run_training(args, peft_model, **kwargs):
571
  ## ---------------------step 1: accelerator setup---------------------------
572
  accelerator = Accelerator( # Initialize Accelerator
573
  gradient_accumulation_steps=args.gradient_accumulation_steps,
@@ -576,6 +576,29 @@ def run_training(args, peft_model, **kwargs):
576
  )
577
  output_dir = args.project_dir
578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
579
  # Make one log on every process with the configuration for debugging.
580
  create_logging(logging, logger, accelerator)
581
 
@@ -698,7 +721,7 @@ def run_training(args, peft_model, **kwargs):
698
  # ==================================================================
699
 
700
 
701
- def setup_model(lora_ckpt_path="huggingface-pickscore", lora_rank=16):
702
  parser = get_parser()
703
  args = parser.parse_args()
704
 
@@ -721,41 +744,13 @@ def setup_model(lora_ckpt_path="huggingface-pickscore", lora_rank=16):
721
  model.first_stage_model = model.first_stage_model.half()
722
  model.cond_stage_model = model.cond_stage_model.half()
723
 
724
- # step 2.1: add LoRA using peft
725
- config = peft.LoraConfig(
726
- r=lora_rank,
727
- target_modules=["to_k", "to_v", "to_q"], # only diffusion_model has these modules
728
- lora_dropout=0.01,
729
- )
730
 
731
- peft_model = peft.get_peft_model(model, config)
732
-
733
- peft_model.print_trainable_parameters()
734
-
735
- # load the pretrained LoRA model
736
- if lora_ckpt_path != "Base Model":
737
- if lora_ckpt_path == "huggingface-hps-aesthetic": # download the pretrained LoRA model from huggingface
738
- snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
739
- lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_hps_aesthetic.pt'
740
- elif lora_ckpt_path == "huggingface-pickscore": # download the pretrained LoRA model from huggingface
741
- snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
742
- lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_pickscore.pt'
743
- elif lora_ckpt_path == "peft_model_532":
744
- lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/peft_model_532.pt'
745
- elif lora_ckpt_path == "peft_model_548":
746
- lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/peft_model_548.pt'
747
- elif lora_ckpt_path == "peft_model_536":
748
- lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/peft_model_536.pt'
749
- elif lora_ckpt_path == "peft_model_400":
750
- lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/peft_model_400.pt'
751
- # load the pretrained LoRA model
752
- peft.set_peft_model_state_dict(peft_model, torch.load(lora_ckpt_path))
753
 
754
  print("Model setup complete!")
755
- return peft_model
756
 
757
 
758
- def main_fn(prompt, seed=200, height=320, width=512, unconditional_guidance_scale=12, ddim_steps=25, ddim_eta=1.0,
759
  frames=24, savefps=10, model=None):
760
 
761
  parser = get_parser()
@@ -765,6 +760,8 @@ def main_fn(prompt, seed=200, height=320, width=512, unconditional_guidance_scal
765
 
766
  # overwrite the default arguments
767
  args.prompt_str = prompt
 
 
768
  args.seed = seed
769
  args.height = height
770
  args.width = width
 
567
  and is_sample_preview
568
 
569
 
570
+ def run_training(args, model, **kwargs):
571
  ## ---------------------step 1: accelerator setup---------------------------
572
  accelerator = Accelerator( # Initialize Accelerator
573
  gradient_accumulation_steps=args.gradient_accumulation_steps,
 
576
  )
577
  output_dir = args.project_dir
578
 
579
+
580
+ # step 2.1: add LoRA using peft
581
+ config = peft.LoraConfig(
582
+ r=args.lora_rank,
583
+ target_modules=["to_k", "to_v", "to_q"], # only diffusion_model has these modules
584
+ lora_dropout=0.01,
585
+ )
586
+
587
+ peft_model = peft.get_peft_model(model, config)
588
+
589
+ peft_model.print_trainable_parameters()
590
+
591
+ # load the pretrained LoRA model
592
+ if args.lora_ckpt_path != "Base Model":
593
+ if args.lora_ckpt_path == "huggingface-hps-aesthetic": # download the pretrained LoRA model from huggingface
594
+ snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
595
+ args.lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_hps_aesthetic.pt'
596
+ elif args.lora_ckpt_path == "huggingface-pickscore": # download the pretrained LoRA model from huggingface
597
+ snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
598
+ args.lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_pickscore.pt'
599
+ # load the pretrained LoRA model
600
+ peft.set_peft_model_state_dict(peft_model, torch.load(args.lora_ckpt_path))
601
+
602
  # Make one log on every process with the configuration for debugging.
603
  create_logging(logging, logger, accelerator)
604
 
 
721
  # ==================================================================
722
 
723
 
724
+ def setup_model():
725
  parser = get_parser()
726
  args = parser.parse_args()
727
 
 
744
  model.first_stage_model = model.first_stage_model.half()
745
  model.cond_stage_model = model.cond_stage_model.half()
746
 
 
 
 
 
 
 
747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
748
 
749
  print("Model setup complete!")
750
+ return model
751
 
752
 
753
+ def main_fn(prompt, lora_model, lora_rank, seed=200, height=320, width=512, unconditional_guidance_scale=12, ddim_steps=25, ddim_eta=1.0,
754
  frames=24, savefps=10, model=None):
755
 
756
  parser = get_parser()
 
760
 
761
  # overwrite the default arguments
762
  args.prompt_str = prompt
763
+ args.lora_ckpt_path = lora_model
764
+ args.lora_rank = lora_rank
765
  args.seed = seed
766
  args.height = height
767
  args.width = width
app.py CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
2
  import os
3
  import spaces
4
  import sys
 
5
  sys.path.append('./VADER-VideoCrafter/scripts/main')
6
  sys.path.append('./VADER-VideoCrafter/scripts')
7
  sys.path.append('./VADER-VideoCrafter')
@@ -19,24 +20,26 @@ examples = [
19
  "huggingface-pickscore", 16, 204, 384, 512, 12.0, 25, 1.0, 24, 10]
20
  ]
21
 
22
- model = None # Placeholder for model
23
 
24
  @spaces.GPU(duration=70)
25
- def gradio_main_fn(prompt, seed, height, width, unconditional_guidance_scale, ddim_steps, ddim_eta,
26
  frames, savefps):
27
  global model
28
  if model is None:
29
  return "Model is not loaded. Please load the model first."
30
  video_path = main_fn(prompt=prompt,
 
 
31
  seed=int(seed),
32
  height=int(height),
33
- width=int(width),
34
- unconditional_guidance_scale=float(unconditional_guidance_scale),
35
- ddim_steps=int(ddim_steps),
36
  ddim_eta=float(ddim_eta),
37
- frames=int(frames),
38
  savefps=int(savefps),
39
- model=model)
40
 
41
  return video_path
42
 
@@ -60,35 +63,6 @@ def update_dropdown(lora_rank):
60
  else: # 0
61
  return gr.update(value="Base Model")
62
 
63
- @spaces.GPU(duration=180)
64
- def setup_model_progress(lora_model, lora_rank):
65
- global model
66
-
67
- # Disable buttons and show loading indicator
68
- yield (gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False), "Loading model...")
69
-
70
- model = setup_model(lora_model, lora_rank) # Ensure you pass the necessary parameters to the setup_model function
71
-
72
- # Enable buttons after loading and update indicator
73
- yield (gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), "Model loaded successfully")
74
-
75
- @spaces.GPU(duration=300)
76
- def generate_example(prompt, lora_model, lora_rank, seed, height, width, unconditional_guidance_scale, ddim_steps, ddim_eta,
77
- frames, savefps):
78
- global model
79
- model = setup_model(lora_model, lora_rank)
80
- video_path = main_fn(prompt=prompt,
81
- seed=int(seed),
82
- height=int(height),
83
- width=int(width),
84
- unconditional_guidance_scale=float(unconditional_guidance_scale),
85
- ddim_steps=int(ddim_steps),
86
- ddim_eta=float(ddim_eta),
87
- frames=int(frames),
88
- savefps=int(savefps),
89
- model=model)
90
- return video_path
91
-
92
  custom_css = """
93
  #centered {
94
  display: flex;
@@ -215,23 +189,19 @@ with gr.Blocks(css=custom_css) as demo:
215
  value="huggingface-pickscore"
216
  )
217
  lora_rank = gr.Slider(minimum=8, maximum=16, label="LoRA Rank", step = 8, value=16)
218
- load_btn = gr.Button("Load Model")
219
- # Add a label to show the loading indicator
220
- loading_indicator = gr.Label(value="", label="Loading Indicator")
221
 
222
  with gr.Column(scale=0.3):
223
  output_video = gr.Video(elem_id="image-upload")
224
 
225
  with gr.Row(elem_id="centered"):
226
  with gr.Column(scale=0.6):
227
- prompt = gr.Textbox(placeholder="Enter prompt text here", lines=4, label="Text Prompt",
228
- value="A mermaid with flowing hair and a shimmering tail discovers a hidden underwater kingdom adorned with coral palaces, glowing pearls, and schools of colorful fish, encountering both wonders and dangers along the way.")
229
 
230
  seed = gr.Slider(minimum=0, maximum=65536, label="Seed", step = 1, value=200)
231
 
232
- run_btn = gr.Button("Run Inference")
233
-
234
-
235
  with gr.Row():
236
  height = gr.Slider(minimum=0, maximum=1024, label="Height", step = 16, value=384)
237
  width = gr.Slider(minimum=0, maximum=1024, label="Width", step = 16, value=512)
@@ -252,10 +222,10 @@ with gr.Blocks(css=custom_css) as demo:
252
  reset_btn.click(fn=reset_fn, outputs=[prompt, seed, height, width, unconditional_guidance_scale, DDIM_Steps, DDIM_Eta, frames, lora_rank, savefps, lora_model])
253
 
254
 
255
-
256
- load_btn.click(fn=setup_model_progress, inputs=[lora_model, lora_rank], outputs=[load_btn, run_btn, reset_btn, loading_indicator])
257
  run_btn.click(fn=gradio_main_fn,
258
- inputs=[prompt, seed, height, width, unconditional_guidance_scale, DDIM_Steps, DDIM_Eta, frames, savefps],
 
 
259
  outputs=output_video
260
  )
261
 
@@ -263,9 +233,11 @@ with gr.Blocks(css=custom_css) as demo:
263
  lora_rank.change(fn=update_dropdown, inputs=lora_rank, outputs=lora_model)
264
 
265
  gr.Examples(examples=examples,
266
- inputs=[prompt, lora_model, lora_rank, seed, height, width, unconditional_guidance_scale, DDIM_Steps, DDIM_Eta, frames, savefps],
 
 
267
  outputs=output_video,
268
- fn=generate_example,
269
  run_on_click=False,
270
  cache_examples="lazy",
271
  )
 
2
  import os
3
  import spaces
4
  import sys
5
+ from copy import deepcopy
6
  sys.path.append('./VADER-VideoCrafter/scripts/main')
7
  sys.path.append('./VADER-VideoCrafter/scripts')
8
  sys.path.append('./VADER-VideoCrafter')
 
20
  "huggingface-pickscore", 16, 204, 384, 512, 12.0, 25, 1.0, 24, 10]
21
  ]
22
 
23
+ model = setup_model()
24
 
25
  @spaces.GPU(duration=70)
26
+ def gradio_main_fn(prompt, lora_model, lora_rank, seed, height, width, unconditional_guidance_scale, ddim_steps, ddim_eta,
27
  frames, savefps):
28
  global model
29
  if model is None:
30
  return "Model is not loaded. Please load the model first."
31
  video_path = main_fn(prompt=prompt,
32
+ lora_model=lora_model,
33
+ lora_rank=int(lora_rank),
34
  seed=int(seed),
35
  height=int(height),
36
+ width=int(width),
37
+ unconditional_guidance_scale=float(unconditional_guidance_scale),
38
+ ddim_steps=int(ddim_steps),
39
  ddim_eta=float(ddim_eta),
40
+ frames=int(frames),
41
  savefps=int(savefps),
42
+ model=deepcopy(model))
43
 
44
  return video_path
45
 
 
63
  else: # 0
64
  return gr.update(value="Base Model")
65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  custom_css = """
67
  #centered {
68
  display: flex;
 
189
  value="huggingface-pickscore"
190
  )
191
  lora_rank = gr.Slider(minimum=8, maximum=16, label="LoRA Rank", step = 8, value=16)
192
+ prompt = gr.Textbox(placeholder="Enter prompt text here", lines=4, label="Text Prompt",
193
+ value="A mermaid with flowing hair and a shimmering tail discovers a hidden underwater kingdom adorned with coral palaces, glowing pearls, and schools of colorful fish, encountering both wonders and dangers along the way.")
194
+ run_btn = gr.Button("Run Inference")
195
 
196
  with gr.Column(scale=0.3):
197
  output_video = gr.Video(elem_id="image-upload")
198
 
199
  with gr.Row(elem_id="centered"):
200
  with gr.Column(scale=0.6):
201
+
 
202
 
203
  seed = gr.Slider(minimum=0, maximum=65536, label="Seed", step = 1, value=200)
204
 
 
 
 
205
  with gr.Row():
206
  height = gr.Slider(minimum=0, maximum=1024, label="Height", step = 16, value=384)
207
  width = gr.Slider(minimum=0, maximum=1024, label="Width", step = 16, value=512)
 
222
  reset_btn.click(fn=reset_fn, outputs=[prompt, seed, height, width, unconditional_guidance_scale, DDIM_Steps, DDIM_Eta, frames, lora_rank, savefps, lora_model])
223
 
224
 
 
 
225
  run_btn.click(fn=gradio_main_fn,
226
+ inputs=[prompt, lora_model, lora_rank,
227
+ seed, height, width, unconditional_guidance_scale,
228
+ DDIM_Steps, DDIM_Eta, frames, savefps],
229
  outputs=output_video
230
  )
231
 
 
233
  lora_rank.change(fn=update_dropdown, inputs=lora_rank, outputs=lora_model)
234
 
235
  gr.Examples(examples=examples,
236
+ inputs=[prompt, lora_model, lora_rank, seed,
237
+ height, width, unconditional_guidance_scale,
238
+ DDIM_Steps, DDIM_Eta, frames, savefps],
239
  outputs=output_video,
240
+ fn=gradio_main_fn,
241
  run_on_click=False,
242
  cache_examples="lazy",
243
  )
app_bk.py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import spaces
4
+ import sys
5
+ sys.path.append('./VADER-VideoCrafter/scripts/main')
6
+ sys.path.append('./VADER-VideoCrafter/scripts')
7
+ sys.path.append('./VADER-VideoCrafter')
8
+
9
+
10
+ from train_t2v_lora import main_fn, setup_model
11
+
12
+ examples = [
13
+ ["A fairy tends to enchanted, glowing flowers.", 'huggingface-hps-aesthetic', 8, 400, 384, 512, 12.0, 25, 1.0, 24, 10],
14
+ ["A cat playing an electric guitar in a loft with industrial-style decor and soft, multicolored lights.", 'huggingface-hps-aesthetic', 8, 206, 384, 512, 12.0, 25, 1.0, 24, 10],
15
+ ["A raccoon playing a guitar under a blossoming cherry tree.", 'huggingface-hps-aesthetic', 8, 204, 384, 512, 12.0, 25, 1.0, 24, 10],
16
+ ["A mermaid with flowing hair and a shimmering tail discovers a hidden underwater kingdom adorned with coral palaces, glowing pearls, and schools of colorful fish, encountering both wonders and dangers along the way.",
17
+ "huggingface-pickscore", 16, 205, 384, 512, 12.0, 25, 1.0, 24, 10],
18
+ ["A talking bird with shimmering feathers and a melodious voice leads an adventure to find a legendary treasure, guiding through enchanted forests, ancient ruins, and mystical challenges.",
19
+ "huggingface-pickscore", 16, 204, 384, 512, 12.0, 25, 1.0, 24, 10]
20
+ ]
21
+
22
+ model = None # Placeholder for model
23
+
24
+ @spaces.GPU(duration=70)
25
+ def gradio_main_fn(prompt, seed, height, width, unconditional_guidance_scale, ddim_steps, ddim_eta,
26
+ frames, savefps):
27
+ global model
28
+ if model is None:
29
+ return "Model is not loaded. Please load the model first."
30
+ video_path = main_fn(prompt=prompt,
31
+ seed=int(seed),
32
+ height=int(height),
33
+ width=int(width),
34
+ unconditional_guidance_scale=float(unconditional_guidance_scale),
35
+ ddim_steps=int(ddim_steps),
36
+ ddim_eta=float(ddim_eta),
37
+ frames=int(frames),
38
+ savefps=int(savefps),
39
+ model=model)
40
+
41
+ return video_path
42
+
43
+ def reset_fn():
44
+ return ("A mermaid with flowing hair and a shimmering tail discovers a hidden underwater kingdom adorned with coral palaces, glowing pearls, and schools of colorful fish, encountering both wonders and dangers along the way.",
45
+ 200, 384, 512, 12.0, 25, 1.0, 24, 16, 10, "huggingface-pickscore")
46
+
47
+ def update_lora_rank(lora_model):
48
+ if lora_model == "huggingface-pickscore":
49
+ return gr.update(value=16)
50
+ elif lora_model == "huggingface-hps-aesthetic":
51
+ return gr.update(value=8)
52
+ else: # "Base Model"
53
+ return gr.update(value=8)
54
+
55
+ def update_dropdown(lora_rank):
56
+ if lora_rank == 16:
57
+ return gr.update(value="huggingface-pickscore")
58
+ elif lora_rank == 8:
59
+ return gr.update(value="huggingface-hps-aesthetic")
60
+ else: # 0
61
+ return gr.update(value="Base Model")
62
+
63
+ @spaces.GPU(duration=120)
64
+ def setup_model_progress(lora_model, lora_rank):
65
+ global model
66
+
67
+ # Disable buttons and show loading indicator
68
+ yield (gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False), "Loading model...")
69
+
70
+ model = setup_model(lora_model, lora_rank) # Ensure you pass the necessary parameters to the setup_model function
71
+
72
+ # Enable buttons after loading and update indicator
73
+ yield (gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), "Model loaded successfully")
74
+
75
+ @spaces.GPU(duration=180)
76
+ def generate_example(prompt, lora_model, lora_rank, seed, height, width, unconditional_guidance_scale, ddim_steps, ddim_eta,
77
+ frames, savefps):
78
+ global model
79
+ model = setup_model(lora_model, lora_rank)
80
+ video_path = main_fn(prompt=prompt,
81
+ seed=int(seed),
82
+ height=int(height),
83
+ width=int(width),
84
+ unconditional_guidance_scale=float(unconditional_guidance_scale),
85
+ ddim_steps=int(ddim_steps),
86
+ ddim_eta=float(ddim_eta),
87
+ frames=int(frames),
88
+ savefps=int(savefps),
89
+ model=model)
90
+ return video_path
91
+
92
+ custom_css = """
93
+ #centered {
94
+ display: flex;
95
+ justify-content: center;
96
+ }
97
+ .column-centered {
98
+ display: flex;
99
+ flex-direction: column;
100
+ align-items: center;
101
+ width: 60%;
102
+ }
103
+ #image-upload {
104
+ flex-grow: 1;
105
+ }
106
+ #params .tabs {
107
+ display: flex;
108
+ flex-direction: column;
109
+ flex-grow: 1;
110
+ }
111
+ #params .tabitem[style="display: block;"] {
112
+ flex-grow: 1;
113
+ display: flex !important;
114
+ }
115
+ #params .gap {
116
+ flex-grow: 1;
117
+ }
118
+ #params .form {
119
+ flex-grow: 1 !important;
120
+ }
121
+ #params .form > :last-child{
122
+ flex-grow: 1;
123
+ }
124
+ """
125
+
126
+ with gr.Blocks(css=custom_css) as demo:
127
+ with gr.Row():
128
+ with gr.Column():
129
+ gr.HTML(
130
+ """
131
+ <h1 style='text-align: center; font-size: 3.2em; margin-bottom: 0.5em; font-family: Arial, sans-serif; margin: 20px;'>
132
+ Video Diffusion Alignment via Reward Gradient
133
+ </h1>
134
+ """
135
+ )
136
+ gr.HTML(
137
+ """
138
+ <style>
139
+ body {
140
+ font-family: Arial, sans-serif;
141
+ text-align: center;
142
+ margin: 50px;
143
+ }
144
+ a {
145
+ text-decoration: none !important;
146
+ color: black !important;
147
+ }
148
+
149
+ </style>
150
+ <body>
151
+ <div style="font-size: 1.4em; margin-bottom: 0.5em; ">
152
+ <a href="https://mihirp1998.github.io">Mihir Prabhudesai</a><sup>*</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
153
+ <a href="https://russellmendonca.github.io/">Russell Mendonca</a><sup>*</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
154
+ <a href="mailto: zheyangqin.qzy@gmail.com">Zheyang Qin</a><sup>*</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
155
+ <a href="https://www.cs.cmu.edu/~katef/">Katerina Fragkiadaki</a><sup></sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
156
+ <a href="https://www.cs.cmu.edu/~dpathak/">Deepak Pathak</a><sup></sup>
157
+
158
+
159
+ </div>
160
+ <div style="font-size: 1.3em; font-style: italic;">
161
+ Carnegie Mellon University
162
+ </div>
163
+ </body>
164
+ """
165
+ )
166
+ gr.HTML(
167
+ """
168
+ <head>
169
+ <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css">
170
+
171
+ <style>
172
+ .button-container {
173
+ display: flex;
174
+ justify-content: center;
175
+ gap: 10px;
176
+ margin-top: 10px;
177
+ }
178
+
179
+ .button-container a {
180
+ display: inline-flex;
181
+ align-items: center;
182
+ padding: 10px 20px;
183
+ border-radius: 30px;
184
+ border: 1px solid #ccc;
185
+ text-decoration: none;
186
+ color: #333 !important;
187
+ font-size: 16px;
188
+ text-decoration: none !important;
189
+ }
190
+
191
+ .button-container a i {
192
+ margin-right: 8px;
193
+ }
194
+ </style>
195
+ </head>
196
+
197
+ <div class="button-container">
198
+ <a href="https://arxiv.org/abs/2407.08737" class="btn btn-outline-primary">
199
+ <i class="fa-solid fa-file-pdf"></i> Paper
200
+ </a>
201
+ <a href="https://vader-vid.github.io/" class="btn btn-outline-danger">
202
+ <i class="fa-solid fa-video"></i> Website
203
+ <a href="https://github.com/mihirp1998/VADER" class="btn btn-outline-secondary">
204
+ <i class="fa-brands fa-github"></i> Code
205
+ </a>
206
+ </div>
207
+ """
208
+ )
209
+
210
+ with gr.Row(elem_id="centered"):
211
+ with gr.Column(scale=0.3, elem_id="params"):
212
+ lora_model = gr.Dropdown(
213
+ label="VADER Model",
214
+ choices=["huggingface-pickscore", "huggingface-hps-aesthetic", "Base Model"],
215
+ value="huggingface-pickscore"
216
+ )
217
+ lora_rank = gr.Slider(minimum=8, maximum=16, label="LoRA Rank", step = 8, value=16)
218
+ load_btn = gr.Button("Load Model")
219
+ # Add a label to show the loading indicator
220
+ loading_indicator = gr.Label(value="", label="Loading Indicator")
221
+
222
+ with gr.Column(scale=0.3):
223
+ output_video = gr.Video(elem_id="image-upload")
224
+
225
+ with gr.Row(elem_id="centered"):
226
+ with gr.Column(scale=0.6):
227
+ prompt = gr.Textbox(placeholder="Enter prompt text here", lines=4, label="Text Prompt",
228
+ value="A mermaid with flowing hair and a shimmering tail discovers a hidden underwater kingdom adorned with coral palaces, glowing pearls, and schools of colorful fish, encountering both wonders and dangers along the way.")
229
+
230
+ seed = gr.Slider(minimum=0, maximum=65536, label="Seed", step = 1, value=200)
231
+
232
+ run_btn = gr.Button("Run Inference")
233
+
234
+
235
+ with gr.Row():
236
+ height = gr.Slider(minimum=0, maximum=1024, label="Height", step = 16, value=384)
237
+ width = gr.Slider(minimum=0, maximum=1024, label="Width", step = 16, value=512)
238
+
239
+ with gr.Row():
240
+ frames = gr.Slider(minimum=0, maximum=50, label="Frames", step = 1, value=24)
241
+ savefps = gr.Slider(minimum=0, maximum=60, label="Save FPS", step = 1, value=10)
242
+
243
+
244
+ with gr.Row():
245
+ DDIM_Steps = gr.Slider(minimum=0, maximum=100, label="DDIM Steps", step = 1, value=25)
246
+ unconditional_guidance_scale = gr.Slider(minimum=0, maximum=50, label="Guidance Scale", step = 0.1, value=12.0)
247
+ DDIM_Eta = gr.Slider(minimum=0, maximum=1, label="DDIM Eta", step = 0.01, value=1.0)
248
+
249
+ # reset button
250
+ reset_btn = gr.Button("Reset")
251
+
252
+ reset_btn.click(fn=reset_fn, outputs=[prompt, seed, height, width, unconditional_guidance_scale, DDIM_Steps, DDIM_Eta, frames, lora_rank, savefps, lora_model])
253
+
254
+
255
+
256
+ load_btn.click(fn=setup_model_progress, inputs=[lora_model, lora_rank], outputs=[load_btn, run_btn, reset_btn, loading_indicator])
257
+ run_btn.click(fn=gradio_main_fn,
258
+ inputs=[prompt, seed, height, width, unconditional_guidance_scale, DDIM_Steps, DDIM_Eta, frames, savefps],
259
+ outputs=output_video
260
+ )
261
+
262
+ lora_model.change(fn=update_lora_rank, inputs=lora_model, outputs=lora_rank)
263
+ lora_rank.change(fn=update_dropdown, inputs=lora_rank, outputs=lora_model)
264
+
265
+ gr.Examples(examples=examples,
266
+ inputs=[prompt, lora_model, lora_rank, seed, height, width, unconditional_guidance_scale, DDIM_Steps, DDIM_Eta, frames, savefps],
267
+ outputs=output_video,
268
+ fn=generate_example,
269
+ run_on_click=False,
270
+ cache_examples="lazy",
271
+ )
272
+
273
+ demo.launch(share=True)
gradio_cached_examples/32/indices.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ 0
gradio_cached_examples/32/log.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ component 0,flag,username,timestamp
2
+ "{""video"": {""path"": ""gradio_cached_examples/32/component 0/fd156c6a458fa048724e/temporal.mp4"", ""url"": ""/file=/tmp/gradio/4bc133becbc469de8da700250f7f7df1103c6f56/temporal.mp4"", ""size"": null, ""orig_name"": ""temporal.mp4"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, ""subtitles"": null}",,,2024-07-19 00:00:10.509808
gradio_cached_examples/34/indices.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ 0
gradio_cached_examples/34/log.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ component 0,flag,username,timestamp
2
+ "{""video"": {""path"": ""gradio_cached_examples/34/component 0/d2ac1c9664e80f60d50f/temporal.mp4"", ""url"": ""/file=/tmp/gradio/4bc133becbc469de8da700250f7f7df1103c6f56/temporal.mp4"", ""size"": null, ""orig_name"": ""temporal.mp4"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, ""subtitles"": null}",,,2024-07-18 23:33:26.912888