Vadhwid / app.py
QinOwen
fix-bug
2ad9d00
raw
history blame
10.3 kB
import gradio as gr
import os
import spaces
import sys
from copy import deepcopy
sys.path.append('./VADER-VideoCrafter/scripts/main')
sys.path.append('./VADER-VideoCrafter/scripts')
sys.path.append('./VADER-VideoCrafter')
from train_t2v_lora import main_fn, setup_model
examples = [
["A fairy tends to enchanted, glowing flowers.", 'huggingface-hps-aesthetic', 8, 400, 384, 512, 12.0, 25, 1.0, 24, 10],
["A cat playing an electric guitar in a loft with industrial-style decor and soft, multicolored lights.", 'huggingface-hps-aesthetic', 8, 206, 384, 512, 12.0, 25, 1.0, 24, 10],
["A raccoon playing a guitar under a blossoming cherry tree.", 'huggingface-hps-aesthetic', 8, 204, 384, 512, 12.0, 25, 1.0, 24, 10],
["A mermaid with flowing hair and a shimmering tail discovers a hidden underwater kingdom adorned with coral palaces, glowing pearls, and schools of colorful fish, encountering both wonders and dangers along the way.",
"huggingface-pickscore", 16, 205, 384, 512, 12.0, 25, 1.0, 24, 10],
["A talking bird with shimmering feathers and a melodious voice leads an adventure to find a legendary treasure, guiding through enchanted forests, ancient ruins, and mystical challenges.",
"huggingface-pickscore", 16, 204, 384, 512, 12.0, 25, 1.0, 24, 10]
]
model = setup_model()
@spaces.GPU(duration=120)
def gradio_main_fn(prompt, lora_model, lora_rank, seed, height, width, unconditional_guidance_scale, ddim_steps, ddim_eta,
frames, savefps):
global model
if model is None:
return "Model is not loaded. Please load the model first."
video_path = main_fn(prompt=prompt,
lora_model=lora_model,
lora_rank=int(lora_rank),
seed=int(seed),
height=int(height),
width=int(width),
unconditional_guidance_scale=float(unconditional_guidance_scale),
ddim_steps=int(ddim_steps),
ddim_eta=float(ddim_eta),
frames=int(frames),
savefps=int(savefps),
model=deepcopy(model))
return video_path
def reset_fn():
return ("A mermaid with flowing hair and a shimmering tail discovers a hidden underwater kingdom adorned with coral palaces, glowing pearls, and schools of colorful fish, encountering both wonders and dangers along the way.",
200, 384, 512, 12.0, 25, 1.0, 24, 16, 10, "huggingface-pickscore")
def update_lora_rank(lora_model):
if lora_model == "huggingface-pickscore":
return gr.update(value=16)
elif lora_model == "huggingface-hps-aesthetic":
return gr.update(value=8)
else: # "Base Model"
return gr.update(value=8)
def update_dropdown(lora_rank):
if lora_rank == 16:
return gr.update(value="huggingface-pickscore")
elif lora_rank == 8:
return gr.update(value="huggingface-hps-aesthetic")
else: # 0
return gr.update(value="Base Model")
custom_css = """
#centered {
display: flex;
justify-content: center;
}
.column-centered {
display: flex;
flex-direction: column;
align-items: center;
width: 60%;
}
#image-upload {
flex-grow: 1;
}
#params .tabs {
display: flex;
flex-direction: column;
flex-grow: 1;
}
#params .tabitem[style="display: block;"] {
flex-grow: 1;
display: flex !important;
}
#params .gap {
flex-grow: 1;
}
#params .form {
flex-grow: 1 !important;
}
#params .form > :last-child{
flex-grow: 1;
}
"""
with gr.Blocks(css=custom_css) as demo:
with gr.Row():
with gr.Column():
gr.HTML(
"""
<h1 style='text-align: center; font-size: 3.2em; margin-bottom: 0.5em; font-family: Arial, sans-serif; margin: 20px;'>
Video Diffusion Alignment via Reward Gradient
</h1>
"""
)
gr.HTML(
"""
<style>
body {
font-family: Arial, sans-serif;
text-align: center;
margin: 50px;
}
a {
text-decoration: none !important;
color: black !important;
}
</style>
<body>
<div style="font-size: 1.4em; margin-bottom: 0.5em; ">
<a href="https://mihirp1998.github.io">Mihir Prabhudesai</a><sup>*</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<a href="https://russellmendonca.github.io/">Russell Mendonca</a><sup>*</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<a href="mailto: zheyangqin.qzy@gmail.com">Zheyang Qin</a><sup>*</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<a href="https://www.cs.cmu.edu/~katef/">Katerina Fragkiadaki</a><sup></sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<a href="https://www.cs.cmu.edu/~dpathak/">Deepak Pathak</a><sup></sup>
</div>
<div style="font-size: 1.3em; font-style: italic;">
Carnegie Mellon University
</div>
</body>
"""
)
gr.HTML(
"""
<head>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css">
<style>
.button-container {
display: flex;
justify-content: center;
gap: 10px;
margin-top: 10px;
}
.button-container a {
display: inline-flex;
align-items: center;
padding: 10px 20px;
border-radius: 30px;
border: 1px solid #ccc;
text-decoration: none;
color: #333 !important;
font-size: 16px;
text-decoration: none !important;
}
.button-container a i {
margin-right: 8px;
}
</style>
</head>
<div class="button-container">
<a href="https://arxiv.org/abs/2407.08737" class="btn btn-outline-primary">
<i class="fa-solid fa-file-pdf"></i> Paper
</a>
<a href="https://vader-vid.github.io/" class="btn btn-outline-danger">
<i class="fa-solid fa-video"></i> Website
<a href="https://github.com/mihirp1998/VADER" class="btn btn-outline-secondary">
<i class="fa-brands fa-github"></i> Code
</a>
</div>
"""
)
with gr.Row(elem_id="centered"):
with gr.Column(scale=0.3, elem_id="params"):
lora_model = gr.Dropdown(
label="VADER Model",
choices=["huggingface-pickscore", "huggingface-hps-aesthetic", "Base Model"],
value="huggingface-pickscore"
)
lora_rank = gr.Slider(minimum=8, maximum=16, label="LoRA Rank", step = 8, value=16)
prompt = gr.Textbox(placeholder="Enter prompt text here", lines=4, label="Text Prompt",
value="A mermaid with flowing hair and a shimmering tail discovers a hidden underwater kingdom adorned with coral palaces, glowing pearls, and schools of colorful fish, encountering both wonders and dangers along the way.")
run_btn = gr.Button("Run Inference")
with gr.Column(scale=0.3):
output_video = gr.Video(elem_id="image-upload")
with gr.Row(elem_id="centered"):
with gr.Column(scale=0.6):
seed = gr.Slider(minimum=0, maximum=65536, label="Seed", step = 1, value=200)
with gr.Row():
height = gr.Slider(minimum=0, maximum=512, label="Height", step = 16, value=384)
width = gr.Slider(minimum=0, maximum=512, label="Width", step = 16, value=512)
with gr.Row():
frames = gr.Slider(minimum=0, maximum=50, label="Frames", step = 1, value=24)
savefps = gr.Slider(minimum=0, maximum=30, label="Save FPS", step = 1, value=10)
with gr.Row():
DDIM_Steps = gr.Slider(minimum=0, maximum=50, label="DDIM Steps", step = 1, value=25)
unconditional_guidance_scale = gr.Slider(minimum=0, maximum=50, label="Guidance Scale", step = 0.1, value=12.0)
DDIM_Eta = gr.Slider(minimum=0, maximum=1, label="DDIM Eta", step = 0.01, value=1.0)
# reset button
reset_btn = gr.Button("Reset")
reset_btn.click(fn=reset_fn, outputs=[prompt, seed, height, width, unconditional_guidance_scale, DDIM_Steps, DDIM_Eta, frames, lora_rank, savefps, lora_model])
run_btn.click(fn=gradio_main_fn,
inputs=[prompt, lora_model, lora_rank,
seed, height, width, unconditional_guidance_scale,
DDIM_Steps, DDIM_Eta, frames, savefps],
outputs=output_video
)
lora_model.change(fn=update_lora_rank, inputs=lora_model, outputs=lora_rank)
lora_rank.change(fn=update_dropdown, inputs=lora_rank, outputs=lora_model)
gr.Examples(examples=examples,
inputs=[prompt, lora_model, lora_rank, seed,
height, width, unconditional_guidance_scale,
DDIM_Steps, DDIM_Eta, frames, savefps],
outputs=output_video,
fn=gradio_main_fn,
run_on_click=False,
cache_examples="lazy",
)
demo.launch(share=True)