tinysam / app.py
merve's picture
merve HF staff
Update app.py
c456e88
raw
history blame
1.46 kB
from huggingface_hub import snapshot_download
import gradio as gr
import numpy as np
import torch
import sys
from tinysam import sam_model_registry, SamPredictor
snapshot_download("merve/tinysam", local_dir="tinysam")
model_type = "vit_t"
sam = sam_model_registry[model_type](checkpoint="./tinysam/tinysam.pth")
predictor = SamPredictor(sam)
def infer(img):
# background (original image) layers[0] ( point prompt) composite (total image)
image = img["background"].convert("RGB")
point_prompt = img["layers"][0]
total_image = img["composite"]
#torch_img = torch.from_numpy(np.array(image))
#torch_img = torch_img.permute(2, 0, 1)
predictor.set_image(np.array(image))
# get point prompt
img_arr = np.array(point_prompt)
nonzero_indices = np.nonzero(img_arr)
center_x = int(np.mean(nonzero_indices[1]))
center_y = int(np.mean(nonzero_indices[0]))
input_point = np.array([[center_x, center_y]])
input_label = np.array([1])
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
)
result_label = [(masks[0, :, :], "mask")]
return image, result_label
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
im = gr.ImageEditor(
type="pil"
)
submit_btn = gr.Button()
output = gr.AnnotatedImage()
submit_btn.click(infer, inputs=im, outputs=gr.AnnotatedImage())
demo.launch(debug=True)