Spaces:
Sleeping
Sleeping
[Update]Back to leaderboard
Browse files
app.py
CHANGED
@@ -1,12 +1,15 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
|
|
|
|
|
|
3 |
from src.about import (
|
4 |
CITATION_BUTTON_LABEL,
|
5 |
CITATION_BUTTON_TEXT,
|
6 |
EVALUATION_QUEUE_TEXT,
|
7 |
INTRODUCTION_TEXT,
|
8 |
LLM_BENCHMARKS_TEXT,
|
9 |
-
#FAQ_TEXT,
|
10 |
TITLE,
|
11 |
)
|
12 |
from src.display.css_html_js import custom_css
|
@@ -23,163 +26,320 @@ from src.display.utils import (
|
|
23 |
WeightType,
|
24 |
Precision
|
25 |
)
|
26 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH,
|
27 |
-
from
|
28 |
-
from
|
29 |
-
import copy
|
30 |
|
31 |
|
32 |
def restart_space():
|
33 |
-
API.restart_space(repo_id=REPO_ID
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def update_table(
|
41 |
hidden_df: pd.DataFrame,
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
):
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
filtered_df = select_columns(hidden_df, columns_1, columns_2, columns_3)
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
return filtered_df
|
53 |
|
54 |
|
55 |
-
def select_columns(df: pd.DataFrame,
|
56 |
-
always_here_cols = [
|
57 |
-
|
|
|
|
|
58 |
# We use COLS to maintain sorting
|
59 |
-
|
|
|
|
|
|
|
60 |
|
61 |
-
if (len(columns_1)+len(columns_2) + len(columns_3)) == 0:
|
62 |
-
filtered_df = df[
|
63 |
-
always_here_cols +
|
64 |
-
[c for c in all_columns if c in df.columns]
|
65 |
-
]
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
return filtered_df
|
74 |
|
75 |
|
76 |
-
def
|
|
|
|
|
77 |
# Show all models
|
78 |
-
if
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
filtered_df = filtered_df[filtered_df["Method"].isin(model_query)]
|
83 |
-
return filtered_df
|
84 |
|
|
|
|
|
|
|
85 |
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
|
88 |
|
89 |
|
|
|
90 |
with demo:
|
91 |
-
|
92 |
-
gr.Image("./assets/logo.png", height="200px", width="200px", scale=0.1,
|
93 |
-
show_download_button=False, container=False)
|
94 |
-
gr.HTML(TITLE, elem_id="title")
|
95 |
-
|
96 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
|
|
97 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
-
with gr.TabItem("
|
99 |
with gr.Row():
|
100 |
with gr.Column():
|
101 |
with gr.Row():
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
elem_id="column-select",
|
107 |
-
)
|
108 |
-
|
109 |
-
with gr.Row():
|
110 |
-
shown_columns_1 = gr.CheckboxGroup(
|
111 |
-
choices=["Style-UA", "Style-IRA", "Style-CRA", "Object-UA", "Object-IRA", "Object-CRA"],
|
112 |
-
label="Style / Object Unlearning Effectiveness",
|
113 |
-
elem_id="column-select",
|
114 |
-
interactive=True,
|
115 |
)
|
116 |
-
|
117 |
with gr.Row():
|
118 |
-
|
119 |
-
choices=[
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
elem_id="column-select",
|
122 |
interactive=True,
|
123 |
)
|
124 |
-
|
125 |
with gr.Row():
|
126 |
-
|
127 |
-
|
128 |
-
label="Resource Costs",
|
129 |
-
elem_id="column-select",
|
130 |
-
interactive=True,
|
131 |
)
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
leaderboard_table = gr.components.Dataframe(
|
135 |
-
value=
|
|
|
|
|
|
|
|
|
|
|
136 |
elem_id="leaderboard-table",
|
137 |
interactive=False,
|
138 |
visible=True,
|
139 |
-
# column_widths=["2%", "33%"]
|
140 |
)
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
146 |
visible=False,
|
147 |
-
# column_widths=["2%", "33%"]
|
148 |
)
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
selector.change(
|
153 |
update_table,
|
154 |
-
[
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
160 |
],
|
161 |
leaderboard_table,
|
162 |
queue=True,
|
163 |
)
|
164 |
-
|
165 |
-
with gr.TabItem("π Model Submit", elem_id="llm-benchmark-tab-table", id=1):
|
166 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
167 |
-
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
|
168 |
|
169 |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
170 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
with gr.Row():
|
174 |
-
with gr.Accordion("π Citation", open=
|
175 |
citation_button = gr.Textbox(
|
176 |
value=CITATION_BUTTON_TEXT,
|
177 |
label=CITATION_BUTTON_LABEL,
|
178 |
-
lines=
|
179 |
elem_id="citation-button",
|
180 |
show_copy_button=True,
|
181 |
)
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
|
1 |
+
import subprocess
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
|
7 |
from src.about import (
|
8 |
CITATION_BUTTON_LABEL,
|
9 |
CITATION_BUTTON_TEXT,
|
10 |
EVALUATION_QUEUE_TEXT,
|
11 |
INTRODUCTION_TEXT,
|
12 |
LLM_BENCHMARKS_TEXT,
|
|
|
13 |
TITLE,
|
14 |
)
|
15 |
from src.display.css_html_js import custom_css
|
|
|
26 |
WeightType,
|
27 |
Precision
|
28 |
)
|
29 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
30 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
31 |
+
from src.submission.submit import add_new_eval
|
|
|
32 |
|
33 |
|
34 |
def restart_space():
|
35 |
+
API.restart_space(repo_id=REPO_ID)
|
36 |
|
37 |
+
try:
|
38 |
+
print(EVAL_REQUESTS_PATH)
|
39 |
+
snapshot_download(
|
40 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
41 |
+
)
|
42 |
+
except Exception:
|
43 |
+
restart_space()
|
44 |
+
try:
|
45 |
+
print(EVAL_RESULTS_PATH)
|
46 |
+
snapshot_download(
|
47 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
48 |
+
)
|
49 |
+
except Exception:
|
50 |
+
restart_space()
|
51 |
+
|
52 |
+
|
53 |
+
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
54 |
+
leaderboard_df = original_df.copy()
|
55 |
|
56 |
+
(
|
57 |
+
finished_eval_queue_df,
|
58 |
+
running_eval_queue_df,
|
59 |
+
pending_eval_queue_df,
|
60 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
61 |
+
|
62 |
+
|
63 |
+
# Searching and filtering
|
64 |
def update_table(
|
65 |
hidden_df: pd.DataFrame,
|
66 |
+
columns: list,
|
67 |
+
type_query: list,
|
68 |
+
precision_query: str,
|
69 |
+
size_query: list,
|
70 |
+
show_deleted: bool,
|
71 |
+
query: str,
|
72 |
):
|
73 |
+
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
74 |
+
filtered_df = filter_queries(query, filtered_df)
|
75 |
+
df = select_columns(filtered_df, columns)
|
76 |
+
return df
|
77 |
|
|
|
78 |
|
79 |
+
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
80 |
+
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
|
|
|
81 |
|
82 |
|
83 |
+
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
84 |
+
always_here_cols = [
|
85 |
+
AutoEvalColumn.model_type_symbol.name,
|
86 |
+
AutoEvalColumn.model.name,
|
87 |
+
]
|
88 |
# We use COLS to maintain sorting
|
89 |
+
filtered_df = df[
|
90 |
+
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
|
91 |
+
]
|
92 |
+
return filtered_df
|
93 |
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
96 |
+
final_df = []
|
97 |
+
if query != "":
|
98 |
+
queries = [q.strip() for q in query.split(";")]
|
99 |
+
for _q in queries:
|
100 |
+
_q = _q.strip()
|
101 |
+
if _q != "":
|
102 |
+
temp_filtered_df = search_table(filtered_df, _q)
|
103 |
+
if len(temp_filtered_df) > 0:
|
104 |
+
final_df.append(temp_filtered_df)
|
105 |
+
if len(final_df) > 0:
|
106 |
+
filtered_df = pd.concat(final_df)
|
107 |
+
filtered_df = filtered_df.drop_duplicates(
|
108 |
+
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
109 |
+
)
|
110 |
|
111 |
return filtered_df
|
112 |
|
113 |
|
114 |
+
def filter_models(
|
115 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
116 |
+
) -> pd.DataFrame:
|
117 |
# Show all models
|
118 |
+
if show_deleted:
|
119 |
+
filtered_df = df
|
120 |
+
else: # Show only still on the hub models
|
121 |
+
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
|
|
|
|
122 |
|
123 |
+
type_emoji = [t[0] for t in type_query]
|
124 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
125 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
126 |
|
127 |
+
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
128 |
+
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
129 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
130 |
+
filtered_df = filtered_df.loc[mask]
|
131 |
|
132 |
+
return filtered_df
|
133 |
|
134 |
|
135 |
+
demo = gr.Blocks(css=custom_css)
|
136 |
with demo:
|
137 |
+
gr.HTML(TITLE)
|
|
|
|
|
|
|
|
|
138 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
139 |
+
|
140 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
141 |
+
with gr.TabItem("UnlearnDiffAtk Benchmark", elem_id="UnlearnDiffAtk-benchmark-tab-table", id=0):
|
142 |
with gr.Row():
|
143 |
with gr.Column():
|
144 |
with gr.Row():
|
145 |
+
search_bar = gr.Textbox(
|
146 |
+
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
|
147 |
+
show_label=False,
|
148 |
+
elem_id="search-bar",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
)
|
|
|
150 |
with gr.Row():
|
151 |
+
shown_columns = gr.CheckboxGroup(
|
152 |
+
choices=[
|
153 |
+
c.name
|
154 |
+
for c in fields(AutoEvalColumn)
|
155 |
+
if not c.hidden and not c.never_hidden
|
156 |
+
],
|
157 |
+
value=[
|
158 |
+
c.name
|
159 |
+
for c in fields(AutoEvalColumn)
|
160 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
161 |
+
],
|
162 |
+
label="Select columns to show",
|
163 |
elem_id="column-select",
|
164 |
interactive=True,
|
165 |
)
|
|
|
166 |
with gr.Row():
|
167 |
+
deleted_models_visibility = gr.Checkbox(
|
168 |
+
value=False, label="Show gated/private/deleted models", interactive=True
|
|
|
|
|
|
|
169 |
)
|
170 |
+
with gr.Column(min_width=320):
|
171 |
+
#with gr.Box(elem_id="box-filter"):
|
172 |
+
filter_columns_type = gr.CheckboxGroup(
|
173 |
+
label="Unlearning types",
|
174 |
+
choices=[t.to_str() for t in ModelType],
|
175 |
+
value=[t.to_str() for t in ModelType],
|
176 |
+
interactive=True,
|
177 |
+
elem_id="filter-columns-type",
|
178 |
+
)
|
179 |
+
filter_columns_precision = gr.CheckboxGroup(
|
180 |
+
label="Precision",
|
181 |
+
choices=[i.value.name for i in Precision],
|
182 |
+
value=[i.value.name for i in Precision],
|
183 |
+
interactive=True,
|
184 |
+
elem_id="filter-columns-precision",
|
185 |
+
)
|
186 |
+
filter_columns_size = gr.CheckboxGroup(
|
187 |
+
label="Model sizes (in billions of parameters)",
|
188 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
189 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
190 |
+
interactive=True,
|
191 |
+
elem_id="filter-columns-size",
|
192 |
+
)
|
193 |
|
194 |
leaderboard_table = gr.components.Dataframe(
|
195 |
+
value=leaderboard_df[
|
196 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
197 |
+
+ shown_columns.value
|
198 |
+
],
|
199 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
200 |
+
datatype=TYPES,
|
201 |
elem_id="leaderboard-table",
|
202 |
interactive=False,
|
203 |
visible=True,
|
|
|
204 |
)
|
205 |
|
206 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
207 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
208 |
+
value=original_df[COLS],
|
209 |
+
headers=COLS,
|
210 |
+
datatype=TYPES,
|
211 |
visible=False,
|
|
|
212 |
)
|
213 |
+
search_bar.submit(
|
214 |
+
update_table,
|
215 |
+
[
|
216 |
+
hidden_leaderboard_table_for_search,
|
217 |
+
shown_columns,
|
218 |
+
filter_columns_type,
|
219 |
+
filter_columns_precision,
|
220 |
+
filter_columns_size,
|
221 |
+
deleted_models_visibility,
|
222 |
+
search_bar,
|
223 |
+
],
|
224 |
+
leaderboard_table,
|
225 |
+
)
|
226 |
+
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
|
227 |
selector.change(
|
228 |
update_table,
|
229 |
+
[
|
230 |
+
hidden_leaderboard_table_for_search,
|
231 |
+
shown_columns,
|
232 |
+
filter_columns_type,
|
233 |
+
filter_columns_precision,
|
234 |
+
filter_columns_size,
|
235 |
+
deleted_models_visibility,
|
236 |
+
search_bar,
|
237 |
],
|
238 |
leaderboard_table,
|
239 |
queue=True,
|
240 |
)
|
|
|
|
|
|
|
|
|
241 |
|
242 |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
243 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
244 |
+
|
245 |
+
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
246 |
+
with gr.Column():
|
247 |
+
with gr.Row():
|
248 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
249 |
+
|
250 |
+
with gr.Column():
|
251 |
+
with gr.Accordion(
|
252 |
+
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
|
253 |
+
open=False,
|
254 |
+
):
|
255 |
+
with gr.Row():
|
256 |
+
finished_eval_table = gr.components.Dataframe(
|
257 |
+
value=finished_eval_queue_df,
|
258 |
+
headers=EVAL_COLS,
|
259 |
+
datatype=EVAL_TYPES,
|
260 |
+
row_count=5,
|
261 |
+
)
|
262 |
+
with gr.Accordion(
|
263 |
+
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
264 |
+
open=False,
|
265 |
+
):
|
266 |
+
with gr.Row():
|
267 |
+
running_eval_table = gr.components.Dataframe(
|
268 |
+
value=running_eval_queue_df,
|
269 |
+
headers=EVAL_COLS,
|
270 |
+
datatype=EVAL_TYPES,
|
271 |
+
row_count=5,
|
272 |
+
)
|
273 |
+
|
274 |
+
with gr.Accordion(
|
275 |
+
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
276 |
+
open=False,
|
277 |
+
):
|
278 |
+
with gr.Row():
|
279 |
+
pending_eval_table = gr.components.Dataframe(
|
280 |
+
value=pending_eval_queue_df,
|
281 |
+
headers=EVAL_COLS,
|
282 |
+
datatype=EVAL_TYPES,
|
283 |
+
row_count=5,
|
284 |
+
)
|
285 |
+
with gr.Row():
|
286 |
+
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
287 |
+
|
288 |
+
with gr.Row():
|
289 |
+
with gr.Column():
|
290 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
291 |
+
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
292 |
+
model_type = gr.Dropdown(
|
293 |
+
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
294 |
+
label="Model type",
|
295 |
+
multiselect=False,
|
296 |
+
value=None,
|
297 |
+
interactive=True,
|
298 |
+
)
|
299 |
+
|
300 |
+
with gr.Column():
|
301 |
+
precision = gr.Dropdown(
|
302 |
+
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
303 |
+
label="Precision",
|
304 |
+
multiselect=False,
|
305 |
+
value="float16",
|
306 |
+
interactive=True,
|
307 |
+
)
|
308 |
+
weight_type = gr.Dropdown(
|
309 |
+
choices=[i.value.name for i in WeightType],
|
310 |
+
label="Weights type",
|
311 |
+
multiselect=False,
|
312 |
+
value="Original",
|
313 |
+
interactive=True,
|
314 |
+
)
|
315 |
+
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
316 |
+
|
317 |
+
submit_button = gr.Button("Submit Eval")
|
318 |
+
submission_result = gr.Markdown()
|
319 |
+
submit_button.click(
|
320 |
+
add_new_eval,
|
321 |
+
[
|
322 |
+
model_name_textbox,
|
323 |
+
base_model_name_textbox,
|
324 |
+
revision_name_textbox,
|
325 |
+
precision,
|
326 |
+
weight_type,
|
327 |
+
model_type,
|
328 |
+
],
|
329 |
+
submission_result,
|
330 |
+
)
|
331 |
|
332 |
with gr.Row():
|
333 |
+
with gr.Accordion("π Citation", open=False):
|
334 |
citation_button = gr.Textbox(
|
335 |
value=CITATION_BUTTON_TEXT,
|
336 |
label=CITATION_BUTTON_LABEL,
|
337 |
+
lines=10,
|
338 |
elem_id="citation-button",
|
339 |
show_copy_button=True,
|
340 |
)
|
341 |
|
342 |
+
scheduler = BackgroundScheduler()
|
343 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
344 |
+
scheduler.start()
|
345 |
+
demo.queue(default_concurrency_limit=40).launch()
|