HDM-interaction-recon / diffusion_utils.py
xiexh20's picture
add hdm demo v1
2fd6166
raw
history blame
11.5 kB
import math
from typing import List, Optional, Sequence, Union
import imageio
import logging
import numpy as np
import torch
import torch.utils.data
from PIL import Image
from torch.distributions import Normal
from torchvision.transforms.functional import to_pil_image
from torchvision.utils import make_grid
from tqdm import tqdm, trange
from pytorch3d.renderer import (
AlphaCompositor,
NormWeightedCompositor,
OrthographicCameras,
PointsRasterizationSettings,
PointsRasterizer,
PointsRenderer,
look_at_view_transform)
from pytorch3d.renderer.cameras import CamerasBase
from pytorch3d.structures import Pointclouds
from pytorch3d.structures.pointclouds import join_pointclouds_as_batch
# Disable unnecessary imageio logging
logging.getLogger("imageio_ffmpeg").setLevel(logging.ERROR)
def rotation_matrix(axis, theta):
"""
Return the rotation matrix associated with counterclockwise rotation about
the given axis by theta radians.
"""
axis = np.asarray(axis)
axis = axis / np.sqrt(np.dot(axis, axis))
a = np.cos(theta / 2.0)
b, c, d = -axis * np.sin(theta / 2.0)
aa, bb, cc, dd = a * a, b * b, c * c, d * d
bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d
return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)],
[2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)],
[2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]])
def rotate(vertices, faces):
'''
vertices: [numpoints, 3]
'''
M = rotation_matrix([0, 1, 0], np.pi / 2).transpose()
N = rotation_matrix([1, 0, 0], -np.pi / 4).transpose()
K = rotation_matrix([0, 0, 1], np.pi).transpose()
v, f = vertices[:, [1, 2, 0]].dot(M).dot(N).dot(K), faces[:, [1, 2, 0]]
return v, f
def norm(v, f):
v = (v - v.min()) / (v.max() - v.min()) - 0.5
return v, f
def getGradNorm(net):
pNorm = torch.sqrt(sum(torch.sum(p ** 2) for p in net.parameters()))
gradNorm = torch.sqrt(sum(torch.sum(p.grad ** 2) for p in net.parameters()))
return pNorm, gradNorm
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1 and m.weight is not None:
torch.nn.init.xavier_normal_(m.weight)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_()
m.bias.data.fill_(0)
def discretized_gaussian_log_likelihood(x, *, means, log_scales):
# Assumes data is integers [0, 1]
assert x.shape == means.shape == log_scales.shape
px0 = Normal(torch.zeros_like(means), torch.ones_like(log_scales))
centered_x = x - means
inv_stdv = torch.exp(-log_scales)
plus_in = inv_stdv * (centered_x + 0.5)
cdf_plus = px0.cdf(plus_in)
min_in = inv_stdv * (centered_x - .5)
cdf_min = px0.cdf(min_in)
log_cdf_plus = torch.log(torch.max(cdf_plus, torch.ones_like(cdf_plus) * 1e-12))
log_one_minus_cdf_min = torch.log(torch.max(1. - cdf_min, torch.ones_like(cdf_min) * 1e-12))
cdf_delta = cdf_plus - cdf_min
log_probs = torch.where(
x < 0.001, log_cdf_plus,
torch.where(x > 0.999, log_one_minus_cdf_min,
torch.log(torch.max(cdf_delta, torch.ones_like(cdf_delta) * 1e-12))))
assert log_probs.shape == x.shape
return log_probs
def fig2img(fig):
"""Convert a Matplotlib figure to a PIL Image and return it"""
import io
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
@torch.no_grad()
def visualize_distance_transform(
path_stem: str,
images: torch.Tensor,
) -> str:
output_file_image = f'{path_stem}.png'
if images.shape[3] in [1, 3]: # convert to (B, C, H, W)
images = images.permute(0, 3, 1, 2)
images = images[:, -1:] # (B, 1, H, W) # get only distances (not vectors for now, for simplicity)
image_grid = make_grid(images, nrow=int(math.sqrt(len(images))), pad_value=1, normalize=True)
to_pil_image(image_grid).save(output_file_image)
return output_file_image
@torch.no_grad()
def visualize_image(
path_stem: str,
images: torch.Tensor,
mean: Union[torch.Tensor, float] = 0.5,
std: Union[torch.Tensor, float] = 0.5,
) -> str:
output_file_image = f'{path_stem}.png'
if images.shape[3] in [1, 3, 4]: # convert to (B, C, H, W)
images = images.permute(0, 3, 1, 2)
if images.shape[1] in [3, 4]: # normalize (single-channel images are not normalized)
images[:, :3] = images[:, :3] * std + mean # denormalize (color channels only, not alpha channel)
if images.shape[1] == 4: # normalize (single-channel images are not normalized)
image_alpha = images[:, 3:] # (B, 1, H, W)
bg_color = torch.tensor([230, 220, 250], device=images.device).reshape(1, 3, 1, 1) / 255
images = images[:, :3] * image_alpha + bg_color * (1 - image_alpha) # (B, 3, H, W)
image_grid = make_grid(images, nrow=int(math.sqrt(len(images))), pad_value=1)
to_pil_image(image_grid).save(output_file_image)
return output_file_image
def ensure_point_cloud_has_colors(pointcloud: Pointclouds):
if pointcloud.features_padded() is None:
pointcloud = type(pointcloud)(points=pointcloud.points_padded(),
normals=pointcloud.normals_padded(), features=torch.zeros_like(pointcloud.points_padded()))
return pointcloud
@torch.no_grad()
def render_pointcloud_batch_pytorch3d(
cameras: CamerasBase,
pointclouds: Pointclouds,
image_size: int = 224,
radius: float = 0.01,
points_per_pixel: int = 10,
background_color: Sequence[float] = (0.78431373, 0.78431373, 0.78431373),
compositor: str = 'norm_weighted'
):
# Define the settings for rasterization and shading. Here we set the output image to be of size
# 512x512. As we are rendering images for visualization purposes only we will set faces_per_pixel=1
# and blur_radius=0.0. Refer to rasterize_points.py for explanations of these parameters.
raster_settings = PointsRasterizationSettings(
image_size=image_size,
radius=radius,
points_per_pixel=points_per_pixel,
)
# Rasterizer
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
# Compositor
if compositor == 'alpha':
compositor = AlphaCompositor(background_color=background_color)
elif compositor == 'norm_weighted':
compositor = NormWeightedCompositor(background_color=background_color)
else:
raise ValueError(compositor)
# Create a points renderer by compositing points using an weighted compositor (3D points are
# weighted according to their distance to a pixel and accumulated using a weighted sum)
renderer = PointsRenderer(rasterizer=rasterizer, compositor=compositor)
# We cannot render a point cloud without colors, so add them if the pointcloud does
# not already have them
pointclouds = ensure_point_cloud_has_colors(pointclouds)
# Render batch of image
images = renderer(pointclouds)
return images
@torch.no_grad()
def visualize_pointcloud_batch_pytorch3d(
pointclouds: Pointclouds,
output_file_video: Optional[str] = None,
output_file_image: Optional[str] = None,
cameras: Optional[CamerasBase] = None, # if None, we rotate
scale_factor: float = 1.0,
num_frames: int = 1, # note that it takes a while with 30 * batch_size frames
elev: int = 30,
):
"""Saves a video and a single image of a point cloud"""
assert 360 % num_frames == 0, 'please select a better number of frames'
# Sizes
B, N, C, F = *(pointclouds.points_padded().shape), num_frames
device = pointclouds.device
# If a camera has not been provided, we render from a rotating view around an image
if cameras is None:
# Create view transforms - R is (F, 3, 3) and T is (F, 3)
R, T = look_at_view_transform(dist=10.0, elev=elev, azim=list(range(0, 360, 360 // F)), degrees=True, device=device)
# Repeat
R = R.repeat_interleave(B, dim=0) # (F * B, 3, 3)
T = T.repeat_interleave(B, dim=0) # (F * B, 3)
points = pointclouds.points_padded().tile(F, 1, 1) # (F * B, num_points, 3)
colors = (torch.zeros_like(points) if pointclouds.features_padded() is None else
pointclouds.features_padded().tile(F, 1, 1)) # (F * B, num_points, 3)
# Initialize batch of cameras
cameras = OrthographicCameras(focal_length=(0.25 * scale_factor), device=device, R=R, T=T)
# Wrap in Pointclouds (with color, even if the original point cloud had no color)
pointclouds = Pointclouds(points=points, features=colors).to(device)
# Render image
images = render_pointcloud_batch_pytorch3d(cameras, pointclouds)
# Convert images into grid
image_grids = []
images_for_grids = images.reshape(F, B, *images.shape[1:]).permute(0, 1, 4, 2, 3)
for image_for_grids in images_for_grids:
image_grid = make_grid(image_for_grids, nrow=int(math.sqrt(B)), pad_value=1)
image_grids.append(image_grid)
image_grids = torch.stack(image_grids, dim=0)
image_grids = image_grids.detach().cpu()
# Save image
if output_file_image is not None:
to_pil_image(image_grids[0]).save(output_file_image)
# Save video
if output_file_video:
video = (image_grids * 255).permute(0, 2, 3, 1).to(torch.uint8).numpy()
imageio.mimwrite(output_file_video, video, fps=10)
@torch.no_grad()
def visualize_pointcloud_evolution_pytorch3d(
pointclouds: Pointclouds,
output_file_video: str,
camera: Optional[CamerasBase] = None, # if None, we rotate
scale_factor: float = 1.0,
):
# Device
B, device = len(pointclouds), pointclouds.device
# Cameras
if camera is None:
R, T = look_at_view_transform(dist=10.0, elev=30, azim=0, device=device)
camera = OrthographicCameras(focal_length=(0.25 * scale_factor), device=device, R=R, T=T)
# Render
frames = render_pointcloud_batch_pytorch3d(camera, pointclouds)
# Save video
video = (frames.detach().cpu() * 255).to(torch.uint8).numpy()
imageio.mimwrite(output_file_video, video, fps=10)
def get_camera_index(cameras: CamerasBase, index: Optional[int] = None):
if index is None:
return cameras
kwargs = dict(
R=cameras.R[index].unsqueeze(0),
T=cameras.T[index].unsqueeze(0),
K=cameras.K[index].unsqueeze(0) if cameras.K is not None else None,
)
if hasattr(cameras, 'focal_length'):
kwargs['focal_length'] = cameras.focal_length[index].unsqueeze(0)
if hasattr(cameras, 'principal_point'):
kwargs['principal_point'] = cameras.principal_point[index].unsqueeze(0)
return type(cameras)(**kwargs).to(cameras.device)
def get_metadata(item) -> str:
s = '-------------\n'
for key in item.keys():
value = item[key]
if torch.is_tensor(value) and value.numel() < 25:
value_str = value
elif torch.is_tensor(value):
value_str = value.shape
elif isinstance(value, str):
value_str = value
elif isinstance(value, list) and 0 < len(value) and len(value) < 25 and isinstance(value[0], str):
value_str = value
elif isinstance(value, dict):
value_str = str({k: type(v) for k, v in value.items()})
else:
value_str = type(value)
s += f"{key:<30} {value_str}\n"
return s