Spaces:
Sleeping
Sleeping
import os | |
from dataclasses import dataclass, field | |
from typing import Any, Dict, List, Optional, Iterable | |
import os.path as osp | |
from hydra.core.config_store import ConfigStore | |
from hydra.conf import RunDir | |
class CustomHydraRunDir(RunDir): | |
dir: str = './outputs/${run.name}/single' | |
class RunConfig: | |
name: str = 'debug' | |
job: str = 'train' | |
mixed_precision: str = 'fp16' # 'no' | |
cpu: bool = False | |
seed: int = 42 | |
val_before_training: bool = True | |
vis_before_training: bool = True | |
limit_train_batches: Optional[int] = None | |
limit_val_batches: Optional[int] = None | |
max_steps: int = 100_000 | |
checkpoint_freq: int = 1_000 | |
val_freq: int = 5_000 | |
vis_freq: int = 5_000 | |
# vis_freq: int = 10_000 | |
log_step_freq: int = 20 | |
print_step_freq: int = 100 | |
# config to run demo | |
stage1_name: str = 'stage1' # experiment name to the stage 1 model | |
stage2_name: str = 'stage2' # experiment name to the stage 2 model | |
image_path: str = '' # the path to the images for running demo, can be a single file or a glob pattern | |
# abs path to working dir | |
code_dir_abs: str = osp.dirname(osp.dirname(osp.abspath(__file__))) | |
# Inference configs | |
num_inference_steps: int = 1000 | |
diffusion_scheduler: Optional[str] = 'ddpm' | |
num_samples: int = 1 | |
# num_sample_batches: Optional[int] = None | |
num_sample_batches: Optional[int] = 2000 # XH: change to 2 | |
sample_from_ema: bool = False | |
sample_save_evolutions: bool = False # temporarily set by default | |
save_name: str = 'sample' # XH: additional save name | |
redo: bool = False | |
# for parallel sampling in slurm | |
batch_start: int = 0 | |
batch_end: Optional[int] = None | |
# Training configs | |
freeze_feature_model: bool = True | |
# Coloring training configs | |
coloring_training_noise_std: float = 0.0 | |
coloring_sample_dir: Optional[str] = None | |
sample_mode: str = 'sample' # whether from noise or from some intermediate steps | |
sample_noise_step: int = 500 # add noise to GT up to some steps, and then denoise | |
sample_save_gt: bool = True | |
class LoggingConfig: | |
wandb: bool = True | |
wandb_project: str = 'pc2' | |
class PointCloudProjectionModelConfig: | |
# Feature extraction arguments | |
image_size: int = '${dataset.image_size}' | |
image_feature_model: str = 'vit_base_patch16_224_mae' # or 'vit_small_patch16_224_msn' or 'identity' | |
use_local_colors: bool = True | |
use_local_features: bool = True | |
use_global_features: bool = False | |
use_mask: bool = True | |
use_distance_transform: bool = True | |
# Point cloud data arguments. Note these are here because the processing happens | |
# inside the model, rather than inside the dataset. | |
scale_factor: float = "${dataset.scale_factor}" | |
colors_mean: float = 0.5 | |
colors_std: float = 0.5 | |
color_channels: int = 3 | |
predict_shape: bool = True | |
predict_color: bool = False | |
# added by XH | |
load_sample_init: bool = False # load init samples from file | |
sample_init_scale: float = 1.0 # scale the initial pc samples | |
test_init_with_gtpc: bool = False # test time init samples with GT samples | |
consistent_center: bool = True # use consistent center prediction by CCD-3DR | |
voxel_resolution_multiplier: float = 1 # increase network voxel resolution | |
# predict binary segmentation | |
predict_binary: bool = False # True for stage 1 model, False for others | |
lw_binary: float = 3.0 # to have roughly the same magnitude of the binary segmentation loss | |
# for separate model | |
binary_training_noise_std: float = 0.1 # from github doc for predicting color | |
self_conditioning: bool = False | |
class PVCNNAEModelConfig(PointCloudProjectionModelConfig): | |
"my own model config, must inherit parent class" | |
model_name: str = 'pvcnn-ae' | |
latent_dim: int = 1024 | |
num_dec_blocks: int = 6 | |
block_dims: List[int] = field(default_factory=lambda: [512, 256]) | |
num_points: int = 1500 | |
bottleneck_dim: int = -1 # the input dim to the last MLP layer | |
class PointCloudDiffusionModelConfig(PointCloudProjectionModelConfig): | |
model_name: str = 'pc2-diff-ho' # default as behave | |
# Diffusion arguments | |
beta_start: float = 1e-5 # 0.00085 | |
beta_end: float = 8e-3 # 0.012 | |
beta_schedule: str = 'linear' # 'custom' | |
dm_pred_type: str = 'epsilon' # diffusion model prediction type, sample (x0) or noise | |
# Point cloud model arguments | |
point_cloud_model: str = 'pvcnn' | |
point_cloud_model_embed_dim: int = 64 | |
dataset_type: str = '${dataset.type}' | |
class CrossAttnHOModelConfig(PointCloudDiffusionModelConfig): | |
model_name: str = 'diff-ho-attn' | |
attn_type: str = 'coord3d+posenc-learnable' | |
attn_weight: float = 1.0 | |
point_visible_test: str = 'combine' # To compute point visibility: use all points or only human/object points | |
class DirectTransModelConfig(PointCloudProjectionModelConfig): | |
model_name: str = 'direct-transl-ho' | |
pooling: str = "avg" | |
act: str = 'gelu' | |
out_act: str = 'relu' | |
# feat_dims_transl: Iterable[Any] = (384, 256, 128, 6) # cannot use List[int] https://github.com/facebookresearch/hydra/issues/1752#issuecomment-893174197 | |
# feat_dims_scale: Iterable[Any] = (384, 128, 64, 2) | |
feat_dims_transl: List[int] = field(default_factory=lambda: [384, 256, 128, 6]) | |
feat_dims_scale: List[int] = field(default_factory=lambda: [384, 128, 64, 2]) | |
lw_transl: float = 10000.0 | |
lw_scale: float = 10000.0 | |
class PointCloudColoringModelConfig(PointCloudProjectionModelConfig): | |
# Projection arguments | |
predict_shape: bool = False | |
predict_color: bool = True | |
# Point cloud model arguments | |
point_cloud_model: str = 'pvcnn' | |
point_cloud_model_layers: int = 1 | |
point_cloud_model_embed_dim: int = 64 | |
class DatasetConfig: | |
type: str | |
class PointCloudDatasetConfig(DatasetConfig): | |
eval_split: str = 'val' | |
max_points: int = 16_384 | |
image_size: int = 224 | |
scale_factor: float = 1.0 | |
restrict_model_ids: Optional[List] = None # for only running on a subset of data points | |
class CO3DConfig(PointCloudDatasetConfig): | |
type: str = 'co3dv2' | |
# root: str = os.getenv('CO3DV2_DATASET_ROOT') | |
root: str = "/BS/xxie-2/work/co3d/hydrant" | |
category: str = 'hydrant' | |
subset_name: str = 'fewview_dev' | |
mask_images: bool = '${model.use_mask}' | |
class ShapeNetR2N2Config(PointCloudDatasetConfig): | |
# added by XH | |
fix_sample: bool = True | |
category: str = 'chair' | |
type: str = 'shapenet_r2n2' | |
root: str = "/BS/chiban2/work/data_shapenet/ShapeNetCore.v1" | |
r2n2_dir: str = "/BS/databases20/3d-r2n2" | |
shapenet_dir: str = "/BS/chiban2/work/data_shapenet/ShapeNetCore.v1" | |
preprocessed_r2n2_dir: str = "${dataset.root}/r2n2_preprocessed_renders" | |
splits_file: str = "${dataset.root}/r2n2_standard_splits_from_ShapeNet_taxonomy.json" | |
# splits_file: str = "${dataset.root}/pix2mesh_splits_val05.json" # <-- incorrect | |
scale_factor: float = 7.0 | |
point_cloud_filename: str = 'pointcloud_r2n2.npz' # should use 'pointcloud_mesh.npz' | |
class BehaveDatasetConfig(PointCloudDatasetConfig): | |
# added by XH | |
type: str = 'behave' | |
fix_sample: bool = True | |
behave_dir: str = "/BS/xxie-5/static00/behave_release/sequences/" | |
split_file: str = "" # specify you dataset split file here | |
scale_factor: float = 7.0 # use the same as shapenet | |
sample_ratio_hum: float = 0.5 | |
image_size: int = 224 | |
normalize_type: str = 'comb' | |
smpl_type: str = 'gt' # use which SMPL mesh to obtain normalization parameters | |
test_transl_type: str = 'norm' | |
load_corr_points: bool = False # load autoencoder points for object and SMPL | |
uniform_obj_sample: bool = False | |
# configs for direct translation prediction | |
bkg_type: str = 'none' | |
bbox_params: str = 'none' | |
ho_segm_pred_path: Optional[str] = None | |
use_gt_transl: bool = False | |
cam_noise_std: float = 0. # add noise to the camera pose | |
sep_same_crop: bool = False # use same input image crop to separate models | |
aug_blur: float = 0. # blur augmentation | |
std_coverage: float=3.5 # a heuristic value to estimate translation | |
v2v_path: str = '' # object v2v corr path | |
class ShapeDatasetConfig(BehaveDatasetConfig): | |
"the dataset to train AE for aligned shapes" | |
type: str = 'shape' | |
fix_sample: bool = False | |
split_file: str = "/BS/xxie-2/work/pc2-diff/experiments/splits/shapes-chair.pkl" | |
# TODO | |
class ShapeNetNMRConfig(PointCloudDatasetConfig): | |
type: str = 'shapenet_nmr' | |
shapenet_nmr_dir: str = "/work/lukemk/machine-learning-datasets/3d-reconstruction/ShapeNet_NMR/NMR_Dataset" | |
synset_names: str = 'chair' # comma-separated or 'all' | |
augmentation: str = 'all' | |
scale_factor: float = 7.0 | |
class AugmentationConfig: | |
# need to specify the variable type in order to define it properly | |
max_radius: int = 0 # generate a random square to mask object, this is the radius for the square in pixel size, zero means no occlusion | |
class DataloaderConfig: | |
# batch_size: int = 8 # 2 for debug | |
batch_size: int = 16 | |
num_workers: int = 14 # 0 for debug # suggested by accelerator for gpu20 | |
class LossConfig: | |
diffusion_weight: float = 1.0 | |
rgb_weight: float = 1.0 | |
consistency_weight: float = 1.0 | |
class CheckpointConfig: | |
resume: Optional[str] = "test" | |
resume_training: bool = True | |
resume_training_optimizer: bool = True | |
resume_training_scheduler: bool = True | |
resume_training_state: bool = True | |
class ExponentialMovingAverageConfig: | |
use_ema: bool = False | |
# # From Diffusers EMA (should probably switch) | |
# ema_inv_gamma: float = 1.0 | |
# ema_power: float = 0.75 | |
# ema_max_decay: float = 0.9999 | |
decay: float = 0.999 | |
update_every: int = 20 | |
class OptimizerConfig: | |
type: str | |
name: str | |
lr: float = 3e-4 | |
weight_decay: float = 0.0 | |
scale_learning_rate_with_batch_size: bool = False | |
gradient_accumulation_steps: int = 1 | |
clip_grad_norm: Optional[float] = 50.0 # 5.0 | |
kwargs: Dict = field(default_factory=lambda: dict()) | |
class AdadeltaOptimizerConfig(OptimizerConfig): | |
type: str = 'torch' | |
name: str = 'Adadelta' | |
kwargs: Dict = field(default_factory=lambda: dict( | |
weight_decay=1e-6, | |
)) | |
class AdamOptimizerConfig(OptimizerConfig): | |
type: str = 'torch' | |
name: str = 'AdamW' | |
weight_decay: float = 1e-6 | |
kwargs: Dict = field(default_factory=lambda: dict(betas=(0.95, 0.999))) | |
class SchedulerConfig: | |
type: str | |
kwargs: Dict = field(default_factory=lambda: dict()) | |
class LinearSchedulerConfig(SchedulerConfig): | |
type: str = 'transformers' | |
kwargs: Dict = field(default_factory=lambda: dict( | |
name='linear', | |
num_warmup_steps=0, | |
num_training_steps="${run.max_steps}", | |
)) | |
class CosineSchedulerConfig(SchedulerConfig): | |
type: str = 'transformers' | |
kwargs: Dict = field(default_factory=lambda: dict( | |
name='cosine', | |
num_warmup_steps=2000, # 0 | |
num_training_steps="${run.max_steps}", | |
)) | |
class ProjectConfig: | |
run: RunConfig | |
logging: LoggingConfig | |
dataset: PointCloudDatasetConfig | |
augmentations: AugmentationConfig | |
dataloader: DataloaderConfig | |
loss: LossConfig | |
model: PointCloudProjectionModelConfig | |
ema: ExponentialMovingAverageConfig | |
checkpoint: CheckpointConfig | |
optimizer: OptimizerConfig | |
scheduler: SchedulerConfig | |
defaults: List[Any] = field(default_factory=lambda: [ | |
'custom_hydra_run_dir', | |
{'run': 'default'}, | |
{'logging': 'default'}, | |
{'model': 'ho-attn'}, | |
# {'dataset': 'co3d'}, | |
{'dataset': 'behave'}, | |
{'augmentations': 'default'}, | |
{'dataloader': 'default'}, | |
{'ema': 'default'}, | |
{'loss': 'default'}, | |
{'checkpoint': 'default'}, | |
{'optimizer': 'adam'}, # default adamw | |
{'scheduler': 'linear'}, | |
# {'scheduler': 'cosine'}, | |
]) | |
cs = ConfigStore.instance() | |
cs.store(name='custom_hydra_run_dir', node=CustomHydraRunDir, package="hydra.run") | |
cs.store(group='run', name='default', node=RunConfig) | |
cs.store(group='logging', name='default', node=LoggingConfig) | |
cs.store(group='model', name='diffrec', node=PointCloudDiffusionModelConfig) | |
cs.store(group='model', name='coloring_model', node=PointCloudColoringModelConfig) | |
cs.store(group='model', name='direct-transl', node=DirectTransModelConfig) | |
cs.store(group='model', name='ho-attn', node=CrossAttnHOModelConfig) | |
cs.store(group='model', name='pvcnn-ae', node=PVCNNAEModelConfig) | |
cs.store(group='dataset', name='co3d', node=CO3DConfig) | |
# TODO | |
cs.store(group='dataset', name='shapenet_r2n2', node=ShapeNetR2N2Config) | |
cs.store(group='dataset', name='behave', node=BehaveDatasetConfig) | |
cs.store(group='dataset', name='shape', node=ShapeDatasetConfig) | |
# cs.store(group='dataset', name='shapenet_nmr', node=ShapeNetNMRConfig) | |
cs.store(group='augmentations', name='default', node=AugmentationConfig) | |
cs.store(group='dataloader', name='default', node=DataloaderConfig) | |
cs.store(group='loss', name='default', node=LossConfig) | |
cs.store(group='ema', name='default', node=ExponentialMovingAverageConfig) | |
cs.store(group='checkpoint', name='default', node=CheckpointConfig) | |
cs.store(group='optimizer', name='adadelta', node=AdadeltaOptimizerConfig) | |
cs.store(group='optimizer', name='adam', node=AdamOptimizerConfig) | |
cs.store(group='scheduler', name='linear', node=LinearSchedulerConfig) | |
cs.store(group='scheduler', name='cosine', node=CosineSchedulerConfig) | |
cs.store(name='configs', node=ProjectConfig) | |