xiexh20's picture
add hdm demo v1
2fd6166
raw
history blame
13.9 kB
import os
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Iterable
import os.path as osp
from hydra.core.config_store import ConfigStore
from hydra.conf import RunDir
@dataclass
class CustomHydraRunDir(RunDir):
dir: str = './outputs/${run.name}/single'
@dataclass
class RunConfig:
name: str = 'debug'
job: str = 'train'
mixed_precision: str = 'fp16' # 'no'
cpu: bool = False
seed: int = 42
val_before_training: bool = True
vis_before_training: bool = True
limit_train_batches: Optional[int] = None
limit_val_batches: Optional[int] = None
max_steps: int = 100_000
checkpoint_freq: int = 1_000
val_freq: int = 5_000
vis_freq: int = 5_000
# vis_freq: int = 10_000
log_step_freq: int = 20
print_step_freq: int = 100
# config to run demo
stage1_name: str = 'stage1' # experiment name to the stage 1 model
stage2_name: str = 'stage2' # experiment name to the stage 2 model
image_path: str = '' # the path to the images for running demo, can be a single file or a glob pattern
# abs path to working dir
code_dir_abs: str = osp.dirname(osp.dirname(osp.abspath(__file__)))
# Inference configs
num_inference_steps: int = 1000
diffusion_scheduler: Optional[str] = 'ddpm'
num_samples: int = 1
# num_sample_batches: Optional[int] = None
num_sample_batches: Optional[int] = 2000 # XH: change to 2
sample_from_ema: bool = False
sample_save_evolutions: bool = False # temporarily set by default
save_name: str = 'sample' # XH: additional save name
redo: bool = False
# for parallel sampling in slurm
batch_start: int = 0
batch_end: Optional[int] = None
# Training configs
freeze_feature_model: bool = True
# Coloring training configs
coloring_training_noise_std: float = 0.0
coloring_sample_dir: Optional[str] = None
sample_mode: str = 'sample' # whether from noise or from some intermediate steps
sample_noise_step: int = 500 # add noise to GT up to some steps, and then denoise
sample_save_gt: bool = True
@dataclass
class LoggingConfig:
wandb: bool = True
wandb_project: str = 'pc2'
@dataclass
class PointCloudProjectionModelConfig:
# Feature extraction arguments
image_size: int = '${dataset.image_size}'
image_feature_model: str = 'vit_base_patch16_224_mae' # or 'vit_small_patch16_224_msn' or 'identity'
use_local_colors: bool = True
use_local_features: bool = True
use_global_features: bool = False
use_mask: bool = True
use_distance_transform: bool = True
# Point cloud data arguments. Note these are here because the processing happens
# inside the model, rather than inside the dataset.
scale_factor: float = "${dataset.scale_factor}"
colors_mean: float = 0.5
colors_std: float = 0.5
color_channels: int = 3
predict_shape: bool = True
predict_color: bool = False
# added by XH
load_sample_init: bool = False # load init samples from file
sample_init_scale: float = 1.0 # scale the initial pc samples
test_init_with_gtpc: bool = False # test time init samples with GT samples
consistent_center: bool = True # use consistent center prediction by CCD-3DR
voxel_resolution_multiplier: float = 1 # increase network voxel resolution
# predict binary segmentation
predict_binary: bool = False # True for stage 1 model, False for others
lw_binary: float = 3.0 # to have roughly the same magnitude of the binary segmentation loss
# for separate model
binary_training_noise_std: float = 0.1 # from github doc for predicting color
self_conditioning: bool = False
@dataclass
class PVCNNAEModelConfig(PointCloudProjectionModelConfig):
"my own model config, must inherit parent class"
model_name: str = 'pvcnn-ae'
latent_dim: int = 1024
num_dec_blocks: int = 6
block_dims: List[int] = field(default_factory=lambda: [512, 256])
num_points: int = 1500
bottleneck_dim: int = -1 # the input dim to the last MLP layer
@dataclass
class PointCloudDiffusionModelConfig(PointCloudProjectionModelConfig):
model_name: str = 'pc2-diff-ho' # default as behave
# Diffusion arguments
beta_start: float = 1e-5 # 0.00085
beta_end: float = 8e-3 # 0.012
beta_schedule: str = 'linear' # 'custom'
dm_pred_type: str = 'epsilon' # diffusion model prediction type, sample (x0) or noise
# Point cloud model arguments
point_cloud_model: str = 'pvcnn'
point_cloud_model_embed_dim: int = 64
dataset_type: str = '${dataset.type}'
@dataclass
class CrossAttnHOModelConfig(PointCloudDiffusionModelConfig):
model_name: str = 'diff-ho-attn'
attn_type: str = 'coord3d+posenc-learnable'
attn_weight: float = 1.0
point_visible_test: str = 'combine' # To compute point visibility: use all points or only human/object points
@dataclass
class DirectTransModelConfig(PointCloudProjectionModelConfig):
model_name: str = 'direct-transl-ho'
pooling: str = "avg"
act: str = 'gelu'
out_act: str = 'relu'
# feat_dims_transl: Iterable[Any] = (384, 256, 128, 6) # cannot use List[int] https://github.com/facebookresearch/hydra/issues/1752#issuecomment-893174197
# feat_dims_scale: Iterable[Any] = (384, 128, 64, 2)
feat_dims_transl: List[int] = field(default_factory=lambda: [384, 256, 128, 6])
feat_dims_scale: List[int] = field(default_factory=lambda: [384, 128, 64, 2])
lw_transl: float = 10000.0
lw_scale: float = 10000.0
@dataclass
class PointCloudColoringModelConfig(PointCloudProjectionModelConfig):
# Projection arguments
predict_shape: bool = False
predict_color: bool = True
# Point cloud model arguments
point_cloud_model: str = 'pvcnn'
point_cloud_model_layers: int = 1
point_cloud_model_embed_dim: int = 64
@dataclass
class DatasetConfig:
type: str
@dataclass
class PointCloudDatasetConfig(DatasetConfig):
eval_split: str = 'val'
max_points: int = 16_384
image_size: int = 224
scale_factor: float = 1.0
restrict_model_ids: Optional[List] = None # for only running on a subset of data points
@dataclass
class CO3DConfig(PointCloudDatasetConfig):
type: str = 'co3dv2'
# root: str = os.getenv('CO3DV2_DATASET_ROOT')
root: str = "/BS/xxie-2/work/co3d/hydrant"
category: str = 'hydrant'
subset_name: str = 'fewview_dev'
mask_images: bool = '${model.use_mask}'
@dataclass
class ShapeNetR2N2Config(PointCloudDatasetConfig):
# added by XH
fix_sample: bool = True
category: str = 'chair'
type: str = 'shapenet_r2n2'
root: str = "/BS/chiban2/work/data_shapenet/ShapeNetCore.v1"
r2n2_dir: str = "/BS/databases20/3d-r2n2"
shapenet_dir: str = "/BS/chiban2/work/data_shapenet/ShapeNetCore.v1"
preprocessed_r2n2_dir: str = "${dataset.root}/r2n2_preprocessed_renders"
splits_file: str = "${dataset.root}/r2n2_standard_splits_from_ShapeNet_taxonomy.json"
# splits_file: str = "${dataset.root}/pix2mesh_splits_val05.json" # <-- incorrect
scale_factor: float = 7.0
point_cloud_filename: str = 'pointcloud_r2n2.npz' # should use 'pointcloud_mesh.npz'
@dataclass
class BehaveDatasetConfig(PointCloudDatasetConfig):
# added by XH
type: str = 'behave'
fix_sample: bool = True
behave_dir: str = "/BS/xxie-5/static00/behave_release/sequences/"
split_file: str = "" # specify you dataset split file here
scale_factor: float = 7.0 # use the same as shapenet
sample_ratio_hum: float = 0.5
image_size: int = 224
normalize_type: str = 'comb'
smpl_type: str = 'gt' # use which SMPL mesh to obtain normalization parameters
test_transl_type: str = 'norm'
load_corr_points: bool = False # load autoencoder points for object and SMPL
uniform_obj_sample: bool = False
# configs for direct translation prediction
bkg_type: str = 'none'
bbox_params: str = 'none'
ho_segm_pred_path: Optional[str] = None
use_gt_transl: bool = False
cam_noise_std: float = 0. # add noise to the camera pose
sep_same_crop: bool = False # use same input image crop to separate models
aug_blur: float = 0. # blur augmentation
std_coverage: float=3.5 # a heuristic value to estimate translation
v2v_path: str = '' # object v2v corr path
@dataclass
class ShapeDatasetConfig(BehaveDatasetConfig):
"the dataset to train AE for aligned shapes"
type: str = 'shape'
fix_sample: bool = False
split_file: str = "/BS/xxie-2/work/pc2-diff/experiments/splits/shapes-chair.pkl"
# TODO
@dataclass
class ShapeNetNMRConfig(PointCloudDatasetConfig):
type: str = 'shapenet_nmr'
shapenet_nmr_dir: str = "/work/lukemk/machine-learning-datasets/3d-reconstruction/ShapeNet_NMR/NMR_Dataset"
synset_names: str = 'chair' # comma-separated or 'all'
augmentation: str = 'all'
scale_factor: float = 7.0
@dataclass
class AugmentationConfig:
# need to specify the variable type in order to define it properly
max_radius: int = 0 # generate a random square to mask object, this is the radius for the square in pixel size, zero means no occlusion
@dataclass
class DataloaderConfig:
# batch_size: int = 8 # 2 for debug
batch_size: int = 16
num_workers: int = 14 # 0 for debug # suggested by accelerator for gpu20
@dataclass
class LossConfig:
diffusion_weight: float = 1.0
rgb_weight: float = 1.0
consistency_weight: float = 1.0
@dataclass
class CheckpointConfig:
resume: Optional[str] = "test"
resume_training: bool = True
resume_training_optimizer: bool = True
resume_training_scheduler: bool = True
resume_training_state: bool = True
@dataclass
class ExponentialMovingAverageConfig:
use_ema: bool = False
# # From Diffusers EMA (should probably switch)
# ema_inv_gamma: float = 1.0
# ema_power: float = 0.75
# ema_max_decay: float = 0.9999
decay: float = 0.999
update_every: int = 20
@dataclass
class OptimizerConfig:
type: str
name: str
lr: float = 3e-4
weight_decay: float = 0.0
scale_learning_rate_with_batch_size: bool = False
gradient_accumulation_steps: int = 1
clip_grad_norm: Optional[float] = 50.0 # 5.0
kwargs: Dict = field(default_factory=lambda: dict())
@dataclass
class AdadeltaOptimizerConfig(OptimizerConfig):
type: str = 'torch'
name: str = 'Adadelta'
kwargs: Dict = field(default_factory=lambda: dict(
weight_decay=1e-6,
))
@dataclass
class AdamOptimizerConfig(OptimizerConfig):
type: str = 'torch'
name: str = 'AdamW'
weight_decay: float = 1e-6
kwargs: Dict = field(default_factory=lambda: dict(betas=(0.95, 0.999)))
@dataclass
class SchedulerConfig:
type: str
kwargs: Dict = field(default_factory=lambda: dict())
@dataclass
class LinearSchedulerConfig(SchedulerConfig):
type: str = 'transformers'
kwargs: Dict = field(default_factory=lambda: dict(
name='linear',
num_warmup_steps=0,
num_training_steps="${run.max_steps}",
))
@dataclass
class CosineSchedulerConfig(SchedulerConfig):
type: str = 'transformers'
kwargs: Dict = field(default_factory=lambda: dict(
name='cosine',
num_warmup_steps=2000, # 0
num_training_steps="${run.max_steps}",
))
@dataclass
class ProjectConfig:
run: RunConfig
logging: LoggingConfig
dataset: PointCloudDatasetConfig
augmentations: AugmentationConfig
dataloader: DataloaderConfig
loss: LossConfig
model: PointCloudProjectionModelConfig
ema: ExponentialMovingAverageConfig
checkpoint: CheckpointConfig
optimizer: OptimizerConfig
scheduler: SchedulerConfig
defaults: List[Any] = field(default_factory=lambda: [
'custom_hydra_run_dir',
{'run': 'default'},
{'logging': 'default'},
{'model': 'ho-attn'},
# {'dataset': 'co3d'},
{'dataset': 'behave'},
{'augmentations': 'default'},
{'dataloader': 'default'},
{'ema': 'default'},
{'loss': 'default'},
{'checkpoint': 'default'},
{'optimizer': 'adam'}, # default adamw
{'scheduler': 'linear'},
# {'scheduler': 'cosine'},
])
cs = ConfigStore.instance()
cs.store(name='custom_hydra_run_dir', node=CustomHydraRunDir, package="hydra.run")
cs.store(group='run', name='default', node=RunConfig)
cs.store(group='logging', name='default', node=LoggingConfig)
cs.store(group='model', name='diffrec', node=PointCloudDiffusionModelConfig)
cs.store(group='model', name='coloring_model', node=PointCloudColoringModelConfig)
cs.store(group='model', name='direct-transl', node=DirectTransModelConfig)
cs.store(group='model', name='ho-attn', node=CrossAttnHOModelConfig)
cs.store(group='model', name='pvcnn-ae', node=PVCNNAEModelConfig)
cs.store(group='dataset', name='co3d', node=CO3DConfig)
# TODO
cs.store(group='dataset', name='shapenet_r2n2', node=ShapeNetR2N2Config)
cs.store(group='dataset', name='behave', node=BehaveDatasetConfig)
cs.store(group='dataset', name='shape', node=ShapeDatasetConfig)
# cs.store(group='dataset', name='shapenet_nmr', node=ShapeNetNMRConfig)
cs.store(group='augmentations', name='default', node=AugmentationConfig)
cs.store(group='dataloader', name='default', node=DataloaderConfig)
cs.store(group='loss', name='default', node=LossConfig)
cs.store(group='ema', name='default', node=ExponentialMovingAverageConfig)
cs.store(group='checkpoint', name='default', node=CheckpointConfig)
cs.store(group='optimizer', name='adadelta', node=AdadeltaOptimizerConfig)
cs.store(group='optimizer', name='adam', node=AdamOptimizerConfig)
cs.store(group='scheduler', name='linear', node=LinearSchedulerConfig)
cs.store(group='scheduler', name='cosine', node=CosineSchedulerConfig)
cs.store(name='configs', node=ProjectConfig)