Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from . import functional as F | |
__all__ = ['FrustumPointNetLoss', 'get_box_corners_3d'] | |
class FrustumPointNetLoss(nn.Module): | |
def __init__(self, num_heading_angle_bins, num_size_templates, size_templates, box_loss_weight=1.0, | |
corners_loss_weight=10.0, heading_residual_loss_weight=20.0, size_residual_loss_weight=20.0): | |
super().__init__() | |
self.box_loss_weight = box_loss_weight | |
self.corners_loss_weight = corners_loss_weight | |
self.heading_residual_loss_weight = heading_residual_loss_weight | |
self.size_residual_loss_weight = size_residual_loss_weight | |
self.num_heading_angle_bins = num_heading_angle_bins | |
self.num_size_templates = num_size_templates | |
self.register_buffer('size_templates', size_templates.view(self.num_size_templates, 3)) | |
self.register_buffer( | |
'heading_angle_bin_centers', torch.arange(0, 2 * np.pi, 2 * np.pi / self.num_heading_angle_bins) | |
) | |
def forward(self, inputs, targets): | |
mask_logits = inputs['mask_logits'] # (B, 2, N) | |
center_reg = inputs['center_reg'] # (B, 3) | |
center = inputs['center'] # (B, 3) | |
heading_scores = inputs['heading_scores'] # (B, NH) | |
heading_residuals_normalized = inputs['heading_residuals_normalized'] # (B, NH) | |
heading_residuals = inputs['heading_residuals'] # (B, NH) | |
size_scores = inputs['size_scores'] # (B, NS) | |
size_residuals_normalized = inputs['size_residuals_normalized'] # (B, NS, 3) | |
size_residuals = inputs['size_residuals'] # (B, NS, 3) | |
mask_logits_target = targets['mask_logits'] # (B, N) | |
center_target = targets['center'] # (B, 3) | |
heading_bin_id_target = targets['heading_bin_id'] # (B, ) | |
heading_residual_target = targets['heading_residual'] # (B, ) | |
size_template_id_target = targets['size_template_id'] # (B, ) | |
size_residual_target = targets['size_residual'] # (B, 3) | |
batch_size = center.size(0) | |
batch_id = torch.arange(batch_size, device=center.device) | |
# Basic Classification and Regression losses | |
mask_loss = F.cross_entropy(mask_logits, mask_logits_target) | |
heading_loss = F.cross_entropy(heading_scores, heading_bin_id_target) | |
size_loss = F.cross_entropy(size_scores, size_template_id_target) | |
center_loss = PF.huber_loss(torch.norm(center_target - center, dim=-1), delta=2.0) | |
center_reg_loss = PF.huber_loss(torch.norm(center_target - center_reg, dim=-1), delta=1.0) | |
# Refinement losses for size/heading | |
heading_residuals_normalized = heading_residuals_normalized[batch_id, heading_bin_id_target] # (B, ) | |
heading_residual_normalized_target = heading_residual_target / (np.pi / self.num_heading_angle_bins) | |
heading_residual_normalized_loss = PF.huber_loss( | |
heading_residuals_normalized - heading_residual_normalized_target, delta=1.0 | |
) | |
size_residuals_normalized = size_residuals_normalized[batch_id, size_template_id_target] # (B, 3) | |
size_residual_normalized_target = size_residual_target / self.size_templates[size_template_id_target] | |
size_residual_normalized_loss = PF.huber_loss( | |
torch.norm(size_residual_normalized_target - size_residuals_normalized, dim=-1), delta=1.0 | |
) | |
# Bounding box losses | |
heading = (heading_residuals[batch_id, heading_bin_id_target] | |
+ self.heading_angle_bin_centers[heading_bin_id_target]) # (B, ) | |
# Warning: in origin code, size_residuals are added twice (issue #43 and #49 in charlesq34/frustum-pointnets) | |
size = (size_residuals[batch_id, size_template_id_target] | |
+ self.size_templates[size_template_id_target]) # (B, 3) | |
corners = get_box_corners_3d(centers=center, headings=heading, sizes=size, with_flip=False) # (B, 3, 8) | |
heading_target = self.heading_angle_bin_centers[heading_bin_id_target] + heading_residual_target # (B, ) | |
size_target = self.size_templates[size_template_id_target] + size_residual_target # (B, 3) | |
corners_target, corners_target_flip = get_box_corners_3d(centers=center_target, headings=heading_target, | |
sizes=size_target, with_flip=True) # (B, 3, 8) | |
corners_loss = PF.huber_loss(torch.min( | |
torch.norm(corners - corners_target, dim=1), torch.norm(corners - corners_target_flip, dim=1) | |
), delta=1.0) | |
# Summing up | |
loss = mask_loss + self.box_loss_weight * ( | |
center_loss + center_reg_loss + heading_loss + size_loss | |
+ self.heading_residual_loss_weight * heading_residual_normalized_loss | |
+ self.size_residual_loss_weight * size_residual_normalized_loss | |
+ self.corners_loss_weight * corners_loss | |
) | |
return loss | |
def get_box_corners_3d(centers, headings, sizes, with_flip=False): | |
""" | |
:param centers: coords of box centers, FloatTensor[N, 3] | |
:param headings: heading angles, FloatTensor[N, ] | |
:param sizes: box sizes, FloatTensor[N, 3] | |
:param with_flip: bool, whether to return flipped box (headings + np.pi) | |
:return: | |
coords of box corners, FloatTensor[N, 3, 8] | |
NOTE: corner points are in counter clockwise order, e.g., | |
2--1 | |
3--0 5 | |
7--4 | |
""" | |
l = sizes[:, 0] # (N,) | |
w = sizes[:, 1] # (N,) | |
h = sizes[:, 2] # (N,) | |
x_corners = torch.stack([l/2, l/2, -l/2, -l/2, l/2, l/2, -l/2, -l/2], dim=1) # (N, 8) | |
y_corners = torch.stack([h/2, h/2, h/2, h/2, -h/2, -h/2, -h/2, -h/2], dim=1) # (N, 8) | |
z_corners = torch.stack([w/2, -w/2, -w/2, w/2, w/2, -w/2, -w/2, w/2], dim=1) # (N, 8) | |
c = torch.cos(headings) # (N,) | |
s = torch.sin(headings) # (N,) | |
o = torch.ones_like(headings) # (N,) | |
z = torch.zeros_like(headings) # (N,) | |
centers = centers.unsqueeze(-1) # (B, 3, 1) | |
corners = torch.stack([x_corners, y_corners, z_corners], dim=1) # (N, 3, 8) | |
R = torch.stack([c, z, s, z, o, z, -s, z, c], dim=1).view(-1, 3, 3) # roty matrix: (N, 3, 3) | |
if with_flip: | |
R_flip = torch.stack([-c, z, -s, z, o, z, s, z, -c], dim=1).view(-1, 3, 3) | |
return torch.matmul(R, corners) + centers, torch.matmul(R_flip, corners) + centers | |
else: | |
return torch.matmul(R, corners) + centers | |
# centers = centers.unsqueeze(1) # (B, 1, 3) | |
# corners = torch.stack([x_corners, y_corners, z_corners], dim=-1) # (N, 8, 3) | |
# RT = torch.stack([c, z, -s, z, o, z, s, z, c], dim=1).view(-1, 3, 3) # (N, 3, 3) | |
# if with_flip: | |
# RT_flip = torch.stack([-c, z, s, z, o, z, -s, z, -c], dim=1).view(-1, 3, 3) # (N, 3, 3) | |
# return torch.matmul(corners, RT) + centers, torch.matmul(corners, RT_flip) + centers # (N, 8, 3) | |
# else: | |
# return torch.matmul(corners, RT) + centers # (N, 8, 3) | |
# corners = torch.stack([x_corners, y_corners, z_corners], dim=1) # (N, 3, 8) | |
# R = torch.stack([c, z, s, z, o, z, -s, z, c], dim=1).view(-1, 3, 3) # (N, 3, 3) | |
# corners = torch.matmul(R, corners) + centers.unsqueeze(2) # (N, 3, 8) | |
# corners = corners.transpose(1, 2) # (N, 8, 3) | |