Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from . import functional as F | |
__all__ = ['BallQuery'] | |
class BallQuery(nn.Module): | |
def __init__(self, radius, num_neighbors, include_coordinates=True): | |
super().__init__() | |
self.radius = radius | |
self.num_neighbors = num_neighbors | |
self.include_coordinates = include_coordinates | |
def forward(self, points_coords, centers_coords, temb, points_features=None): | |
points_coords = points_coords.contiguous() | |
centers_coords = centers_coords.contiguous() | |
neighbor_indices = F.ball_query(centers_coords, points_coords, self.radius, self.num_neighbors) | |
neighbor_coordinates = F.grouping(points_coords, neighbor_indices) | |
neighbor_coordinates = neighbor_coordinates - centers_coords.unsqueeze(-1) | |
if points_features is None: | |
assert self.include_coordinates, 'No Features For Grouping' | |
neighbor_features = neighbor_coordinates | |
else: | |
neighbor_features = F.grouping(points_features, neighbor_indices) # return [B, C, M, U] C=feat dim, M=# centers, U=# neighbours | |
if self.include_coordinates: | |
neighbor_features = torch.cat([neighbor_coordinates, neighbor_features], dim=1) | |
return neighbor_features, F.grouping(temb, neighbor_indices) | |
def extra_repr(self): | |
return 'radius={}, num_neighbors={}{}'.format( | |
self.radius, self.num_neighbors, ', include coordinates' if self.include_coordinates else '') | |
class BallQueryHO(nn.Module): | |
"no point feature, but only relative and abs coordinate" | |
def __init__(self, radius, num_neighbors, include_relative=False): | |
super().__init__() | |
self.radius = radius | |
self.num_neighbors = num_neighbors | |
self.include_relative = include_relative | |
def forward(self, points_coords, centers_coords, points_features=None): | |
""" | |
if not enough points inside the given radius, the entries will be zero | |
if too many points inside the radius, the order is random??? (not sure) | |
:param points_coords: (B, 3, N) | |
:param centers_coords: (B, 3, M) | |
:param points_features: None | |
:return: | |
""" | |
points_coords = points_coords.contiguous() | |
centers_coords = centers_coords.contiguous() | |
neighbor_indices = F.ball_query(centers_coords, points_coords, self.radius, self.num_neighbors) | |
neighbor_coordinates = F.grouping(points_coords, neighbor_indices) # (B, 3, M, U) | |
if self.include_relative: | |
neighbor_coordinates_rela = neighbor_coordinates - centers_coords.unsqueeze(-1) | |
neighbor_coordinates = torch.cat([neighbor_coordinates, neighbor_coordinates_rela], 1) # (B, 6, M, U) | |
# flatten the coordinate | |
neighbor_coordinates = neighbor_coordinates.permute(0, 1, 3, 2) # (B, 3/6, U, M) | |
neighbor_coordinates = torch.flatten(neighbor_coordinates, 1, 2) # (B, 3*U, M) | |
return neighbor_coordinates | |
def extra_repr(self): | |
return 'radius={}, num_neighbors={}{}'.format( | |
self.radius, self.num_neighbors, ', include relative' if self.include_relative else '') | |