HDM-interaction-recon / model /simple /simple_model_utils.py
xiexh20's picture
add hdm demo v1
2fd6166
raw
history blame
8.86 kB
from typing import Any, Callable, Iterable, List, Optional, Union
import torch
import torch.jit as jit
import torch.nn as nn
import torch.nn.functional as F
from torch import Size, Tensor, nn
from torch.nn import LayerNorm
from model.pvcnn.pvcnn_utils import get_timestep_embedding
def sample_b(size: Size, sigma: float) -> Tensor:
"""Sample b matrix for fourier features
Arguments:
size (Size): b matrix size
sigma (float): std of the gaussian
Returns:
b (Tensor): b matrix
"""
return torch.randn(size) * sigma
@jit.script
def map_positional_encoding(v: Tensor, freq_bands: Tensor) -> Tensor:
"""Map v to positional encoding representation phi(v)
Arguments:
v (Tensor): input features (B, IFeatures)
freq_bands (Tensor): frequency bands (N_freqs, )
Returns:
phi(v) (Tensor): fourrier features (B, 3 + (2 * N_freqs) * 3)
"""
pe = [v]
for freq in freq_bands:
fv = freq * v
pe += [torch.sin(fv), torch.cos(fv)]
return torch.cat(pe, dim=-1)
@jit.script
def map_fourier_features(v: Tensor, b: Tensor) -> Tensor:
"""Map v to fourier features representation phi(v)
Arguments:
v (Tensor): input features (B, IFeatures)
b (Tensor): b matrix (OFeatures, IFeatures)
Returns:
phi(v) (Tensor): fourrier features (B, 2 * Features)
"""
PI = 3.141592653589793
a = 2 * PI * v @ b.T
return torch.cat((torch.sin(a), torch.cos(a)), dim=-1)
class FeatureMapping(nn.Module):
"""FeatureMapping nn.Module
Maps v to features following transformation phi(v)
Arguments:
i_dim (int): input dimensions
o_dim (int): output dimensions
"""
def __init__(self, i_dim: int, o_dim: int) -> None:
super().__init__()
self.i_dim = i_dim
self.o_dim = o_dim
def forward(self, v: Tensor) -> Tensor:
"""FeratureMapping forward pass
Arguments:
v (Tensor): input features (B, IFeatures)
Returns:
phi(v) (Tensor): mapped features (B, OFeatures)
"""
raise NotImplementedError("Forward pass not implemented yet!")
class PositionalEncoding(FeatureMapping):
"""PositionalEncoding module
Maps v to positional encoding representation phi(v)
Arguments:
i_dim (int): input dimension for v
N_freqs (int): #frequency to sample (default: 10)
"""
def __init__(
self,
i_dim: int,
N_freqs: int = 10,
) -> None:
super().__init__(i_dim, 3 + (2 * N_freqs) * 3)
self.N_freqs = N_freqs
a, b = 1, self.N_freqs - 1
freq_bands = 2 ** torch.linspace(a, b, self.N_freqs)
self.register_buffer("freq_bands", freq_bands)
def forward(self, v: Tensor) -> Tensor:
"""Map v to positional encoding representation phi(v)
Arguments:
v (Tensor): input features (B, IFeatures)
Returns:
phi(v) (Tensor): fourrier features (B, 3 + (2 * N_freqs) * 3)
"""
return map_positional_encoding(v, self.freq_bands)
class FourierFeatures(FeatureMapping):
"""Fourier Features module
Maps v to fourier features representation phi(v)
Arguments:
i_dim (int): input dimension for v
features (int): output dimension (default: 256)
sigma (float): std of the gaussian (default: 26.)
"""
def __init__(
self,
i_dim: int,
features: int = 256,
sigma: float = 26.,
) -> None:
super().__init__(i_dim, 2 * features)
self.features = features
self.sigma = sigma
self.size = Size((self.features, self.i_dim))
self.register_buffer("b", sample_b(self.size, self.sigma))
def forward(self, v: Tensor) -> Tensor:
"""Map v to fourier features representation phi(v)
Arguments:
v (Tensor): input features (B, IFeatures)
Returns:
phi(v) (Tensor): fourrier features (B, 2 * Features)
"""
return map_fourier_features(v, self.b)
class FeedForward(nn.Module):
""" Adapted from the FeedForward layer from labmlai """
def __init__(
self,
d_in: int,
d_hidden: int,
d_out: int,
activation: Callable = nn.ReLU(),
is_gated: bool = False,
bias1: bool = True,
bias2: bool = True,
bias_gate: bool = True,
dropout: float = 0.1,
use_layernorm: bool = False,
):
super().__init__()
# Layer one parameterized by weight $W_1$ and bias $b_1$
self.layer1 = nn.Linear(d_in, d_hidden, bias=bias1)
# Layer one parameterized by weight $W_1$ and bias $b_1$
self.layer2 = nn.Linear(d_hidden, d_out, bias=bias2)
# Hidden layer dropout
self.dropout = nn.Dropout(dropout)
# Activation function $f$
self.activation = activation
# Whether there is a gate
self.is_gated = is_gated
if is_gated:
# If there is a gate the linear layer to transform inputs to
# be multiplied by the gate, parameterized by weight $V$ and bias $c$
self.linear_v = nn.Linear(d_in, d_hidden, bias=bias_gate)
# Whether to add a layernorm layer
self.use_layernorm = use_layernorm
if use_layernorm:
self.layernorm = LayerNorm(d_in)
def forward(self, x: Tensor, coords: Tensor = None) -> Tensor:
"""Applies a simple feed forward layer"""
x = self.layernorm(x) if self.use_layernorm else x
g = self.activation(self.layer1(x))
x = (g * self.linear_v(x)) if self.is_gated else g
x = self.dropout(x)
x = self.layer2(x)
return x
class BasePointModel(nn.Module):
""" A base class providing useful methods for point cloud processing. """
def __init__(
self,
*,
num_classes,
embed_dim,
extra_feature_channels,
dim: int = 128,
num_layers: int = 6
):
super().__init__()
self.extra_feature_channels = extra_feature_channels
self.timestep_embed_dim = embed_dim
self.output_dim = num_classes
self.dim = dim
self.num_layers = num_layers
# Time embedding function
self.timestep_projection = nn.Sequential(
nn.Linear(embed_dim, embed_dim),
nn.LeakyReLU(0.1, inplace=True),
nn.Linear(embed_dim, embed_dim),
)
# Positional encoding
self.positional_encoding = PositionalEncoding(i_dim=3, N_freqs=10)
positional_encoding_d_out = 3 + (2 * 10) * 3
# Input projection (point coords, point coord encodings, other features, and timestep embeddings)
self.input_projection = nn.Linear(
in_features=(3 + positional_encoding_d_out + extra_feature_channels + self.timestep_embed_dim),
out_features=self.dim
)
# Transformer layers
self.layers = self.get_layers()
# Output projection
self.output_projection = nn.Linear(self.dim, self.output_dim)
def get_layers(self):
raise NotImplementedError('This method should be implemented by subclasses')
def prepare_inputs(self, inputs: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
"""
The inputs have size (B, 3 + S, N), where S is the number of additional
feature channels and N is the number of points. The timesteps t can be either
continuous or discrete. This model has a sort of U-Net-like structure I think,
which is why it first goes down and then up in terms of resolution (?)
"""
# Embed and project timesteps
t_emb = get_timestep_embedding(self.timestep_embed_dim, t, inputs.device)
t_emb = self.timestep_projection(t_emb)[:, None, :].expand(-1, inputs.shape[-1], -1) # (B, N, D_t_emb)
# Separate input coordinates and features
x = torch.transpose(inputs, -2, -1) # -> (B, N, 3 + S)
coords = x[:, :, :3] # (B, N, 3), point coordinates
# Positional encoding of point coords
coords_posenc = self.positional_encoding(coords) # (B, N, D_p_enc)
# Project
x = torch.cat((x, coords_posenc, t_emb), dim=2) # (B, N, 3 + S + D_p_enc + D_t_emb)
x = self.input_projection(x) # (B, N, D_model)
return x, coords
def get_global_tensors(self, x: Tensor):
B, N, D = x.shape
x_pool_max = torch.max(x, dim=1, keepdim=True).values.repeat(1, N, 1) # (B, 1, D)
x_pool_std = torch.std(x, dim=1, keepdim=True).repeat(1, N, 1) # (B, 1, D)
return x_pool_max, x_pool_std
def forward(self, inputs: torch.Tensor, t: torch.Tensor):
raise NotImplementedError('This method should be implemented by subclasses')