Spaces:
Sleeping
Sleeping
from torch.autograd import Function | |
from .backend import _backend | |
__all__ = ['avg_voxelize'] | |
class AvgVoxelization(Function): | |
def forward(ctx, features, coords, resolution): | |
""" | |
:param ctx: | |
:param features: Features of the point cloud, FloatTensor[B, C, N] | |
:param coords: Voxelized Coordinates of each point, IntTensor[B, 3, N] | |
:param resolution: Voxel resolution | |
:return: | |
Voxelized Features, FloatTensor[B, C, R, R, R] | |
""" | |
features = features.contiguous() | |
coords = coords.int().contiguous() | |
b, c, _ = features.shape | |
out, indices, counts = _backend.avg_voxelize_forward(features, coords, resolution) | |
ctx.save_for_backward(indices, counts) | |
return out.view(b, c, resolution, resolution, resolution) | |
def backward(ctx, grad_output): | |
""" | |
:param ctx: | |
:param grad_output: gradient of output, FloatTensor[B, C, R, R, R] | |
:return: | |
gradient of inputs, FloatTensor[B, C, N] | |
""" | |
b, c = grad_output.shape[:2] | |
indices, counts = ctx.saved_tensors | |
grad_features = _backend.avg_voxelize_backward(grad_output.contiguous().view(b, c, -1), indices, counts) | |
return grad_features, None, None | |
avg_voxelize = AvgVoxelization.apply | |