Spaces:
Sleeping
Sleeping
from torch.autograd import Function | |
from .backend import _backend | |
__all__ = ['trilinear_devoxelize'] | |
class TrilinearDevoxelization(Function): | |
def forward(ctx, features, coords, resolution, is_training=True): | |
""" | |
:param ctx: | |
:param coords: the coordinates of points, FloatTensor[B, 3, N] | |
:param features: FloatTensor[B, C, R, R, R] | |
:param resolution: int, the voxel resolution | |
:param is_training: bool, training mode | |
:return: | |
FloatTensor[B, C, N] | |
""" | |
B, C = features.shape[:2] | |
features = features.contiguous().view(B, C, -1) | |
coords = coords.contiguous() | |
outs, inds, wgts = _backend.trilinear_devoxelize_forward(resolution, is_training, coords, features) | |
if is_training: | |
ctx.save_for_backward(inds, wgts) | |
ctx.r = resolution | |
return outs | |
def backward(ctx, grad_output): | |
""" | |
:param ctx: | |
:param grad_output: gradient of outputs, FloatTensor[B, C, N] | |
:return: | |
gradient of inputs, FloatTensor[B, C, R, R, R] | |
""" | |
inds, wgts = ctx.saved_tensors | |
grad_inputs = _backend.trilinear_devoxelize_backward(grad_output.contiguous(), inds, wgts, ctx.r) | |
return grad_inputs.view(grad_output.size(0), grad_output.size(1), ctx.r, ctx.r, ctx.r), None, None, None | |
trilinear_devoxelize = TrilinearDevoxelization.apply | |