xiexh20's picture
add hdm demo v1
2fd6166
raw
history blame
5.52 kB
import torch.nn as nn
import torch
from .voxelization import Voxelization
from .shared_mlp import SharedMLP
from .se import SE3d
from . import functional as F
__all__ = ['PVConv', 'Attention', 'Swish', 'PVConvReLU']
class Swish(nn.Module):
def forward(self,x):
return x * torch.sigmoid(x)
class Attention(nn.Module):
def __init__(self, in_ch, num_groups, D=3):
super(Attention, self).__init__()
assert in_ch % num_groups == 0
# it also has some learnable parameters
if D == 3:
self.q = nn.Conv3d(in_ch, in_ch, 1)
self.k = nn.Conv3d(in_ch, in_ch, 1)
self.v = nn.Conv3d(in_ch, in_ch, 1)
self.out = nn.Conv3d(in_ch, in_ch, 1)
elif D == 1:
self.q = nn.Conv1d(in_ch, in_ch, 1)
self.k = nn.Conv1d(in_ch, in_ch, 1)
self.v = nn.Conv1d(in_ch, in_ch, 1)
self.out = nn.Conv1d(in_ch, in_ch, 1)
self.norm = nn.GroupNorm(num_groups, in_ch)
self.nonlin = Swish()
self.sm = nn.Softmax(-1)
def forward(self, x):
"""
self attention
reso32: Attention layer, x=torch.Size([16, 64, 16, 16, 16]), q=torch.Size([16, 64, 4096]), k=torch.Size([16, 64, 4096]), v=torch.Size([16, 64, 4096])
reso48: Attention layer, x=torch.Size([16, 64, 24, 24, 24]), q=torch.Size([16, 64, 13824]), k=torch.Size([16, 64, 13824]), v=torch.Size([16, 64, 13824])
# this can cause OOM!
:param x: (B, C, reso, reso, reso)?
:return:
"""
B, C = x.shape[:2]
h = x
q = self.q(h).reshape(B,C,-1)
k = self.k(h).reshape(B,C,-1)
v = self.v(h).reshape(B,C,-1)
qk = torch.matmul(q.permute(0, 2, 1), k) #* (int(C) ** (-0.5))
w = self.sm(qk)
h = torch.matmul(v, w.permute(0, 2, 1)).reshape(B,C,*x.shape[2:])
h = self.out(h)
x = h + x
x = self.nonlin(self.norm(x)) # group norm + swish
return x
class PVConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, resolution, attention=False,
dropout=0.1, with_se=False, with_se_relu=False, normalize=True, eps=0):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.resolution = resolution
self.voxelization = Voxelization(resolution, normalize=normalize, eps=eps)
voxel_layers = [
nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=kernel_size // 2),
nn.GroupNorm(num_groups=8, num_channels=out_channels),
Swish()
]
voxel_layers += [nn.Dropout(dropout)] if dropout is not None else []
voxel_layers += [
nn.Conv3d(out_channels, out_channels, kernel_size, stride=1, padding=kernel_size // 2),
nn.GroupNorm(num_groups=8, num_channels=out_channels),
Attention(out_channels, 8) if attention else Swish()
]
if with_se:
voxel_layers.append(SE3d(out_channels, use_relu=with_se_relu))
self.voxel_layers = nn.Sequential(*voxel_layers)
self.point_features = SharedMLP(in_channels, out_channels) # this is basically an MLP
def forward(self, inputs):
features, coords, temb = inputs # features: (B, F, N), temb: sinusoidal embedding of diffusion timestaps
voxel_features, voxel_coords = self.voxelization(features, coords)
voxel_features = self.voxel_layers(voxel_features)
voxel_features = F.trilinear_devoxelize(voxel_features, voxel_coords, self.resolution, self.training)
fused_features = voxel_features + self.point_features(features)
return fused_features, coords, temb # coords is not changed, and also temb
class PVConvReLU(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, resolution, attention=False, leak=0.2,
dropout=0.1, with_se=False, with_se_relu=False, normalize=True, eps=0):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.resolution = resolution
self.voxelization = Voxelization(resolution, normalize=normalize, eps=eps)
voxel_layers = [
nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=kernel_size // 2),
nn.BatchNorm3d(out_channels),
nn.LeakyReLU(leak, True)
]
voxel_layers += [nn.Dropout(dropout)] if dropout is not None else []
voxel_layers += [
nn.Conv3d(out_channels, out_channels, kernel_size, stride=1, padding=kernel_size // 2),
nn.BatchNorm3d(out_channels),
Attention(out_channels, 8) if attention else nn.LeakyReLU(leak, True)
]
if with_se:
voxel_layers.append(SE3d(out_channels, use_relu=with_se_relu))
self.voxel_layers = nn.Sequential(*voxel_layers)
self.point_features = SharedMLP(in_channels, out_channels)
def forward(self, inputs):
features, coords, temb = inputs
voxel_features, voxel_coords = self.voxelization(features, coords)
voxel_features = self.voxel_layers(voxel_features)
voxel_features = F.trilinear_devoxelize(voxel_features, voxel_coords, self.resolution, self.training)
fused_features = voxel_features + self.point_features(features)
return fused_features, coords, temb