Spaces:
Sleeping
Sleeping
from typing import Optional | |
import torch | |
import torch.nn as nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers import ModelMixin | |
from torch import Tensor | |
from timm.models.vision_transformer import Attention, LayerScale, DropPath, Mlp | |
from .point_cloud_model import PointCloudModel | |
class PointCloudModelBlock(nn.Module): | |
def __init__( | |
self, | |
*, | |
# Point cloud model | |
dim: int, | |
model_type: str = 'pvcnn', | |
dropout: float = 0.1, | |
width_multiplier: int = 1, | |
voxel_resolution_multiplier: int = 1, | |
# Transformer model | |
num_heads=6, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_attn=False | |
): | |
super().__init__() | |
# Point cloud model | |
self.norm0 = norm_layer(dim) | |
self.point_cloud_model = PointCloudModel(model_type=model_type, | |
in_channels=dim, out_channels=dim, embed_dim=dim, dropout=dropout, | |
width_multiplier=width_multiplier, voxel_resolution_multiplier=voxel_resolution_multiplier) | |
self.ls0 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | |
self.drop_path0 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
# Attention | |
self.use_attn = use_attn | |
if self.use_attn: | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | |
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
# MLP | |
self.norm2 = norm_layer(dim) | |
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) | |
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | |
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def apply_point_cloud_model(self, x: Tensor, t: Optional[Tensor] = None) -> Tensor: | |
t = t if t is not None else torch.zeros(len(x), device=x.device, dtype=torch.long) | |
return self.point_cloud_model(x, t) | |
def forward(self, x: Tensor): | |
x = x + self.drop_path0(self.ls0(self.apply_point_cloud_model(self.norm0(x)))) | |
if self.use_attn: | |
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) | |
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) | |
return x | |
class PointCloudTransformerModel(ModelMixin, ConfigMixin): | |
def __init__(self, num_layers: int, in_channels: int = 3, out_channels: int = 3, embed_dim: int = 64, **kwargs): | |
super().__init__() | |
self.num_layers = num_layers | |
self.input_projection = nn.Linear(in_channels, embed_dim) | |
self.blocks = nn.Sequential(*[PointCloudModelBlock(dim=embed_dim, **kwargs) for i in range(self.num_layers)]) | |
self.norm = nn.LayerNorm(embed_dim) | |
self.output_projection = nn.Linear(embed_dim, out_channels) | |
def forward(self, inputs: Tensor) -> Tensor: | |
""" Receives input of shape (B, N, in_channels) and returns output | |
of shape (B, N, out_channels) """ | |
x = self.input_projection(inputs) | |
x = self.blocks(x) | |
x = self.output_projection(x) | |
return x | |