HDM-interaction-recon / model /point_cloud_transformer_model.py
xiexh20's picture
add hdm demo v1
2fd6166
raw
history blame
3.48 kB
from typing import Optional
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers import ModelMixin
from torch import Tensor
from timm.models.vision_transformer import Attention, LayerScale, DropPath, Mlp
from .point_cloud_model import PointCloudModel
class PointCloudModelBlock(nn.Module):
def __init__(
self,
*,
# Point cloud model
dim: int,
model_type: str = 'pvcnn',
dropout: float = 0.1,
width_multiplier: int = 1,
voxel_resolution_multiplier: int = 1,
# Transformer model
num_heads=6, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_attn=False
):
super().__init__()
# Point cloud model
self.norm0 = norm_layer(dim)
self.point_cloud_model = PointCloudModel(model_type=model_type,
in_channels=dim, out_channels=dim, embed_dim=dim, dropout=dropout,
width_multiplier=width_multiplier, voxel_resolution_multiplier=voxel_resolution_multiplier)
self.ls0 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path0 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
# Attention
self.use_attn = use_attn
if self.use_attn:
self.norm1 = norm_layer(dim)
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
# MLP
self.norm2 = norm_layer(dim)
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def apply_point_cloud_model(self, x: Tensor, t: Optional[Tensor] = None) -> Tensor:
t = t if t is not None else torch.zeros(len(x), device=x.device, dtype=torch.long)
return self.point_cloud_model(x, t)
def forward(self, x: Tensor):
x = x + self.drop_path0(self.ls0(self.apply_point_cloud_model(self.norm0(x))))
if self.use_attn:
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
class PointCloudTransformerModel(ModelMixin, ConfigMixin):
@register_to_config
def __init__(self, num_layers: int, in_channels: int = 3, out_channels: int = 3, embed_dim: int = 64, **kwargs):
super().__init__()
self.num_layers = num_layers
self.input_projection = nn.Linear(in_channels, embed_dim)
self.blocks = nn.Sequential(*[PointCloudModelBlock(dim=embed_dim, **kwargs) for i in range(self.num_layers)])
self.norm = nn.LayerNorm(embed_dim)
self.output_projection = nn.Linear(embed_dim, out_channels)
def forward(self, inputs: Tensor) -> Tensor:
""" Receives input of shape (B, N, in_channels) and returns output
of shape (B, N, out_channels) """
x = self.input_projection(inputs)
x = self.blocks(x)
x = self.output_projection(x)
return x