HDM-interaction-recon / model /model_diff_data.py
xiexh20's picture
add hdm demo v1
2fd6166
raw
history blame
10.1 kB
"""
model to deal with shapenet inputs and other datasets such as Behave and ProciGen
the model takes a different data dictionary in forward function
"""
import inspect
from typing import Optional
import numpy as np
import torch
import torch.nn.functional as F
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
from diffusers.schedulers.scheduling_pndm import PNDMScheduler
from pytorch3d.implicitron.dataset.data_loader_map_provider import FrameData
from pytorch3d.renderer.cameras import CamerasBase
from pytorch3d.structures import Pointclouds
from torch import Tensor
from tqdm import tqdm
from pytorch3d.renderer import PerspectiveCameras
from pytorch3d.datasets.r2n2.utils import BlenderCamera
from .model import ConditionalPointCloudDiffusionModel
from .model_utils import get_num_points
class ConditionalPCDiffusionShapenet(ConditionalPointCloudDiffusionModel):
def forward(self, batch, mode: str = 'train', **kwargs):
"""
take a batch of data from ShapeNet
"""
images = torch.stack(batch['images'], 0).to('cuda')
masks = torch.stack(batch['masks'], 0).to('cuda')
pc = Pointclouds([x.to('cuda') for x in batch['pclouds']])
camera = BlenderCamera(
torch.stack(batch['R']),
torch.stack(batch['T']),
torch.stack(batch['K']), device='cuda'
)
if mode == 'train':
return self.forward_train(
pc=pc,
camera=camera,
image_rgb=images,
mask=masks,
**kwargs)
elif mode == 'sample':
num_points = kwargs.pop('num_points', get_num_points(pc))
return self.forward_sample(
num_points=num_points,
camera=camera,
image_rgb=images,
mask=masks,
gt_pc=pc,
**kwargs)
else:
raise NotImplementedError()
class ConditionalPCDiffusionBehave(ConditionalPointCloudDiffusionModel):
"diffusion model for Behave dataset"
def forward(self, batch, mode: str = 'train', **kwargs):
images = torch.stack(batch['images'], 0).to('cuda')
masks = torch.stack(batch['masks'], 0).to('cuda')
pc = self.get_input_pc(batch)
camera = PerspectiveCameras(
R=torch.stack(batch['R']),
T=torch.stack(batch['T']),
K=torch.stack(batch['K']),
device='cuda',
in_ndc=True
)
grid_df = torch.stack(batch['grid_df'], 0).to('cuda') if 'grid_df' in batch else None
num_points = kwargs.pop('num_points', get_num_points(pc))
if mode == 'train':
return self.forward_train(
pc=pc,
camera=camera,
image_rgb=images,
mask=masks,
grid_df=grid_df,
**kwargs)
elif mode == 'sample':
return self.forward_sample(
num_points=num_points,
camera=camera,
image_rgb=images,
mask=masks,
gt_pc=pc,
**kwargs)
else:
raise NotImplementedError()
def get_input_pc(self, batch):
pc = Pointclouds([x.to('cuda') for x in batch['pclouds']])
return pc
class ConditionalPCDiffusionSeparateSegm(ConditionalPCDiffusionBehave):
"a separate model to predict binary labels, the final segmentation model"
def __init__(self,
beta_start: float,
beta_end: float,
beta_schedule: str,
point_cloud_model: str,
point_cloud_model_embed_dim: int,
**kwargs, # projection arguments
):
super(ConditionalPCDiffusionSeparateSegm, self).__init__(beta_start, beta_end, beta_schedule,
point_cloud_model,
point_cloud_model_embed_dim, **kwargs)
# add a separate model to predict binary label
from .point_cloud_transformer_model import PointCloudTransformerModel, PointCloudModel
self.binary_model = PointCloudTransformerModel(
num_layers=1, # XH: use the default color model number of layers
model_type=point_cloud_model, # pvcnn
embed_dim=point_cloud_model_embed_dim, # save as pc shape model
in_channels=self.in_channels,
out_channels=1,
)
self.binary_training_noise_std = kwargs.get("binary_training_noise_std", 0.1)
# re-initialize point cloud model
assert self.predict_binary
self.point_cloud_model = PointCloudModel(
model_type=point_cloud_model,
embed_dim=point_cloud_model_embed_dim,
in_channels=self.in_channels,
out_channels=self.out_channels - 1, # not predicting binary from this anymore
voxel_resolution_multiplier=kwargs.get('voxel_resolution_multiplier', 1)
)
def forward_train(
self,
pc: Pointclouds,
camera: Optional[CamerasBase],
image_rgb: Optional[Tensor],
mask: Optional[Tensor],
return_intermediate_steps: bool = False,
**kwargs
):
# first run shape forward, then binary label forward
assert not return_intermediate_steps
assert self.predict_binary
loss_shape = super(ConditionalPCDiffusionSeparateSegm, self).forward_train(pc,
camera,
image_rgb,
mask,
return_intermediate_steps,
**kwargs)
# binary label forward
x_0 = self.point_cloud_to_tensor(pc, normalize=True, scale=True)
x_points, x_colors = x_0[:, :, :3], x_0[:, :, 3:]
# Add noise to points.
x_input = x_points + torch.randn_like(x_points) * self.binary_training_noise_std # std=0.1
x_input = self.get_input_with_conditioning(x_input, camera=camera,
image_rgb=image_rgb, mask=mask, t=None)
# Forward
pred_segm = self.binary_model(x_input)
# use compressed bits
df_grid = kwargs.get('grid_df', None).unsqueeze(1) # (B, 1, resz, resy, resx)
points = x_points.clone().detach() / self.scale_factor * 2 # , normalize to [-1, 1]
points[:, :, 0], points[:, :, 2] = points[:, :, 2].clone(), points[:, :,0].clone() # swap, make sure clone is used!
points = points.unsqueeze(1).unsqueeze(1) # (B,1, 1, N, 3)
with torch.no_grad():
df_interp = F.grid_sample(df_grid, points, padding_mode='border', align_corners=True).squeeze(1).squeeze(1) # (B, 1, 1, 1, N)
binary_label = df_interp[:, 0] > 0.5 # (B, 1, N)
binary_pred = torch.sigmoid(pred_segm.squeeze(-1)) # add a sigmoid layer
loss_binary = F.mse_loss(binary_pred, binary_label.float().squeeze(1).squeeze(1)) * self.lw_binary
loss = loss_shape + loss_binary
return loss, torch.tensor([loss_shape, loss_binary])
def reverse_step(self, extra_step_kwargs, scheduler, t, x_t, x_t_input, **kwargs):
"return (B, N, 4), the 4-th channel is binary label"
B = x_t.shape[0]
# Forward
noise_pred = self.point_cloud_model(x_t_input, t.reshape(1).expand(B))
if self.consistent_center:
assert self.dm_pred_type != 'sample', 'incompatible dm predition type!'
# suggested by the CCD-3DR paper
noise_pred = noise_pred - torch.mean(noise_pred, dim=1, keepdim=True)
# Step: make sure only update the shape (first 3 channels)
x_t = scheduler.step(noise_pred, t, x_t[:, :, :3], **extra_step_kwargs).prev_sample
if self.consistent_center:
x_t = x_t - torch.mean(x_t, dim=1, keepdim=True)
# also add binary prediction
if kwargs.get('inference_binary', False):
pred_segm = self.binary_model(x_t_input)
else:
pred_segm = torch.zeros_like(x_t[:, :, 0:1])
x_t = torch.cat([x_t, torch.sigmoid(pred_segm)], -1)
return x_t
def get_coord_feature(self, x_t):
x_t_input = [x_t[:, :, :3]]
return x_t_input
def tensor_to_point_cloud(self, x: Tensor, /, denormalize: bool = False, unscale: bool = False):
"""
take binary label into account
:param self:
:param x: (B, N, 4), the 4th channel is the binary segmentation, 1-human, 0-object
:param denormalize: denormalize the per-point colors, from pc2
:param unscale: undo point scaling, from pc2
:return: pc with point colors if predict binary label or per-point color
"""
points = x[:, :, :3] / (self.scale_factor if unscale else 1)
if self.predict_color:
colors = self.denormalize(x[:, :, 3:]) if denormalize else x[:, :, 3:]
return Pointclouds(points=points, features=colors)
else:
if self.predict_binary:
assert x.shape[2] == 4
# add color to predicted binary labels
is_hum = x[:, :, 3] > 0.5
features = []
for mask in is_hum:
color = torch.zeros_like(x[0, :, :3]) + torch.tensor([0.5, 1.0, 0]).to(x.device)
color[mask, :] = torch.tensor([0.05, 1.0, 1.0]).to(x.device) # human is light blue, object light green
features.append(color)
else:
assert x.shape[2] == 3
features = None
return Pointclouds(points=points, features=features)