MimicBrush / mimicbrush /mimicbrush_referencenet.py
xichenhku's picture
Upload 162 files
81d8e7c verified
# Modified from https://github.com/tencent-ailab/IP-Adapter
import os
from typing import List
import torch
from diffusers import StableDiffusionPipeline
from diffusers.pipelines.controlnet import MultiControlNetModel
from PIL import Image
from safetensors import safe_open
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from .utils import is_torch2_available
if is_torch2_available():
from .attention_processor import (
AttnProcessor2_0 as AttnProcessor,
)
else:
from .attention_processor import AttnProcessor
from .resampler import LinearResampler
class MimicBrush_RefNet:
def __init__(self, sd_pipe, image_encoder_path, model_ckpt, depth_estimator, depth_guider,referencenet, device):
# Takes model path as input
self.device = device
self.image_encoder_path = image_encoder_path
self.model_ckpt = model_ckpt
self.referencenet = referencenet.to(self.device)
self.depth_estimator = depth_estimator.to(self.device).eval()
self.depth_guider = depth_guider.to(self.device, dtype=torch.float16)
self.pipe = sd_pipe.to(self.device)
self.pipe.unet.set_attn_processor(AttnProcessor())
# load image encoder
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
self.device, dtype=torch.float16
)
self.clip_image_processor = CLIPImageProcessor()
# image proj model
self.image_proj_model = self.init_proj()
self.image_processor = VaeImageProcessor()
self.load_checkpoint()
def init_proj(self):
image_proj_model = LinearResampler(
input_dim=1280,
output_dim=self.pipe.unet.config.cross_attention_dim,
).to(self.device, dtype=torch.float16)
return image_proj_model
def load_checkpoint(self):
state_dict = torch.load(self.model_ckpt, map_location="cpu")
self.image_proj_model.load_state_dict(state_dict["image_proj"])
self.depth_guider.load_state_dict(state_dict["depth_guider"])
print('=== load depth_guider ===')
self.referencenet.load_state_dict(state_dict["referencenet"])
print('=== load referencenet ===')
self.image_encoder.load_state_dict(state_dict["image_encoder"])
print('=== load image_encoder ===')
if "unet" in state_dict.keys():
self.pipe.unet.load_state_dict(state_dict["unet"])
print('=== load unet ===')
@torch.inference_mode()
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image = clip_image.to(self.device, dtype=torch.float16)
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
image_prompt_embeds = self.image_proj_model(clip_image_embeds).to(dtype=torch.float16)
uncond_clip_image_embeds = self.image_encoder(
torch.zeros_like(clip_image), output_hidden_states=True
).hidden_states[-2]
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
return image_prompt_embeds, uncond_image_prompt_embeds
def generate(
self,
pil_image=None,
depth_image = None,
clip_image_embeds=None,
prompt=None,
negative_prompt=None,
num_samples=4,
seed=None,
image = None,
guidance_scale=7.5,
num_inference_steps=30,
**kwargs,
):
if pil_image is not None:
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
else:
num_prompts = clip_image_embeds.size(0)
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
pil_image=pil_image, clip_image_embeds=clip_image_embeds
)
bs_embed, seq_len, _ = image_prompt_embeds.shape
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
depth_image = depth_image.to(self.device)
depth_map = self.depth_estimator(depth_image).unsqueeze(1)
depth_feature = self.depth_guider(depth_map.to(self.device, dtype=torch.float16))
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
images = self.pipe(
prompt_embeds=image_prompt_embeds , # image clip embedding
negative_prompt_embeds=uncond_image_prompt_embeds, # uncond image clip embedding
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
referencenet=self.referencenet,
source_image=pil_image,
image = image,
clip_image_embed= torch.cat([uncond_image_prompt_embeds, image_prompt_embeds], dim=0), # for reference U-Net
depth_feature = depth_feature,
**kwargs,
).images
return images, depth_map
class MimicBrush_RefNet_inputmodel(MimicBrush_RefNet):
# take model as input
def __init__(self, sd_pipe, image_encoder, image_proj_model, depth_estimator, depth_guider, referencenet, device):
self.device = device
self.image_encoder = image_encoder.to(
self.device, dtype=torch.float16
)
self.depth_estimator = depth_estimator.to(self.device)
self.depth_guider = depth_guider.to(self.device, dtype=torch.float16)
self.image_proj_model = image_proj_model.to(self.device, dtype=torch.float16)
self.referencenet = referencenet.to(self.device, dtype=torch.float16)
self.pipe = sd_pipe.to(self.device)
self.pipe.unet.set_attn_processor(AttnProcessor())
self.referencenet.set_attn_processor(AttnProcessor())
self.clip_image_processor = CLIPImageProcessor()