Spaces:
Sleeping
Sleeping
import json | |
import cv2 | |
import numpy as np | |
import os | |
from torch.utils.data import Dataset | |
from PIL import Image | |
import cv2 | |
from .data_utils import * | |
from .base import BaseDataset | |
import albumentations as A | |
class FashionTryonDataset(BaseDataset): | |
def __init__(self, image_dir): | |
self.image_root = image_dir | |
self.data =os.listdir(self.image_root) | |
self.size = (512,512) | |
self.clip_size = (224,224) | |
self.dynamic = 2 | |
def __len__(self): | |
return 5000 | |
def aug_data(self, image): | |
transform = A.Compose([ | |
A.RandomBrightnessContrast(p=0.5), | |
]) | |
transformed = transform(image=image.astype(np.uint8)) | |
transformed_image = transformed["image"] | |
return transformed_image | |
def check_region_size(self, image, yyxx, ratio, mode = 'max'): | |
pass_flag = True | |
H,W = image.shape[0], image.shape[1] | |
H,W = H * ratio, W * ratio | |
y1,y2,x1,x2 = yyxx | |
h,w = y2-y1,x2-x1 | |
if mode == 'max': | |
if h > H and w > W: | |
pass_flag = False | |
elif mode == 'min': | |
if h < H and w < W: | |
pass_flag = False | |
return pass_flag | |
def get_sample(self, idx): | |
cloth_dir = os.path.join(self.image_root, self.data[idx]) | |
ref_image_path = os.path.join(cloth_dir, 'target.jpg') | |
ref_image = cv2.imread(ref_image_path) | |
ref_image = cv2.cvtColor(ref_image.copy(), cv2.COLOR_BGR2RGB) | |
ref_mask_path = os.path.join(cloth_dir,'mask.jpg') | |
ref_mask = cv2.imread(ref_mask_path)[:,:,0] > 128 | |
target_dirs = [i for i in os.listdir(cloth_dir ) if '.jpg' not in i] | |
target_dir_name = np.random.choice(target_dirs) | |
target_image_path = os.path.join(cloth_dir, target_dir_name + '.jpg') | |
target_image= cv2.imread(target_image_path) | |
tar_image = cv2.cvtColor(target_image.copy(), cv2.COLOR_BGR2RGB) | |
target_mask_path = os.path.join(cloth_dir, target_dir_name, 'segment.png') | |
tar_mask= cv2.imread(target_mask_path)[:,:,0] | |
target_mask = tar_mask == 7 | |
kernel = np.ones((3, 3), dtype=np.uint8) | |
tar_mask = cv2.erode(target_mask.astype(np.uint8), kernel, iterations=3) | |
item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask, max_ratio = 1.0) | |
sampled_time_steps = self.sample_timestep() | |
item_with_collage['time_steps'] = sampled_time_steps | |
return item_with_collage | |