Spaces:
Sleeping
Sleeping
import json | |
import cv2 | |
import numpy as np | |
import os | |
from torch.utils.data import Dataset | |
from PIL import Image | |
import cv2 | |
from .data_utils import * | |
from .base import BaseDataset | |
import albumentations as A | |
class DresscodeDataset(BaseDataset): | |
def __init__(self, image_dir): | |
self.image_root = image_dir | |
self.data = os.listdir(self.image_root) | |
self.size = (512,512) | |
self.clip_size = (224,224) | |
self.dynamic = 2 | |
def __len__(self): | |
return 20000 | |
def check_region_size(self, image, yyxx, ratio, mode = 'max'): | |
pass_flag = True | |
H,W = image.shape[0], image.shape[1] | |
H,W = H * ratio, W * ratio | |
y1,y2,x1,x2 = yyxx | |
h,w = y2-y1,x2-x1 | |
if mode == 'max': | |
if h > H and w > W: | |
pass_flag = False | |
elif mode == 'min': | |
if h < H and w < W: | |
pass_flag = False | |
return pass_flag | |
def get_sample(self, idx): | |
tar_mask_path = os.path.join(self.image_root, self.data[idx]) | |
tar_image_path = tar_mask_path.replace('label_maps/','images/').replace('_4.png','_0.jpg') | |
ref_image_path = tar_mask_path.replace('label_maps/','images/').replace('_4.png','_1.jpg') | |
# Read Image and Mask | |
ref_image = cv2.imread(ref_image_path) | |
ref_image = cv2.cvtColor(ref_image, cv2.COLOR_BGR2RGB) | |
tar_image = cv2.imread(tar_image_path) | |
tar_image = cv2.cvtColor(tar_image, cv2.COLOR_BGR2RGB) | |
ref_mask = (ref_image < 240).astype(np.uint8)[:,:,0] | |
tar_mask = Image.open(tar_mask_path ).convert('P') | |
tar_mask= np.array(tar_mask) | |
tar_mask = tar_mask == 4 | |
item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask, max_ratio = 1.0) | |
sampled_time_steps = self.sample_timestep() | |
item_with_collage['time_steps'] = sampled_time_steps | |
return item_with_collage | |