LKCell / datamodel /wsi_datamodel.py
xiazhi1
initial commit
aea73e2
# -*- coding: utf-8 -*-
# WSI Model
#
# @ Fabian Hörst, fabian.hoerst@uk-essen.de
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
import json
from pathlib import Path
from typing import Union, List, Callable, Tuple
from dataclasses import dataclass, field
import numpy as np
import yaml
import logging
import torch
from PIL import Image
@dataclass
class WSI:
"""WSI object
Args:
name (str): WSI name
patient (str): Patient name
slide_path (Union[str, Path]): Full path to the WSI file.
patched_slide_path (Union[str, Path], optional): Full path to preprocessed WSI files (patches). Defaults to None.
embedding_name (Union[str, Path], optional): Defaults to None.
label (Union[str, int, float, np.ndarray], optional): Label of the WSI. Defaults to None.
logger (logging.logger, optional): Logger module for logging information. Defaults to None.
"""
name: str
patient: str
slide_path: Union[str, Path]
patched_slide_path: Union[str, Path] = None
embedding_name: Union[str, Path] = None
label: Union[str, int, float, np.ndarray] = None
logger: logging.Logger = None
# unset attributes used in this class
metadata: dict = field(init=False, repr=False)
all_patch_metadata: List[dict] = field(init=False, repr=False)
patches_list: List = field(init=False, repr=False)
patch_transform: Callable = field(init=False, repr=False)
# name without ending (e.g. slide1 instead of slide1.svs)
def __post_init__(self):
"""Post-Processing object"""
super().__init__()
# define paramaters that are used, but not defined at startup
# convert string to path
self.slide_path = Path(self.slide_path).resolve()
if self.patched_slide_path is not None:
self.patched_slide_path = Path(self.patched_slide_path).resolve()
# load metadata
self._get_metadata()
self._get_wsi_patch_metadata()
self.patch_transform = None # hardcode to None (should not be a parameter, but should be defined)
if self.logger is not None:
self.logger.debug(self.__repr__())
def _get_metadata(self) -> None:
"""Load metadata yaml file"""
self.metadata_path = self.patched_slide_path / "metadata.yaml"
with open(self.metadata_path.resolve(), "r") as metadata_yaml:
try:
self.metadata = yaml.safe_load(metadata_yaml)
except yaml.YAMLError as exc:
print(exc)
self.metadata["label_map_inverse"] = {
v: k for k, v in self.metadata["label_map"].items()
}
def _get_wsi_patch_metadata(self) -> None:
"""Load patch_metadata json file and convert to dict and lists"""
with open(self.patched_slide_path / "patch_metadata.json", "r") as json_file:
metadata = json.load(json_file)
self.patches_list = [str(list(elem.keys())[0]) for elem in metadata]
self.all_patch_metadata = {
str(list(elem.keys())[0]): elem[str(list(elem.keys())[0])]
for elem in metadata
}
def load_patch_metadata(self, patch_name: str) -> dict:
"""Return the metadata of a patch with given name (including patch suffix, e.g., wsi_1_1.png)
This function assumes that metadata path is a subpath of the patches dataset path
Args:
patch_name (str): Name of patch
Returns:
dict: metadata
"""
patch_metadata_path = self.all_patch_metadata[patch_name]["metadata_path"]
patch_metadata_path = self.patched_slide_path / patch_metadata_path
# open
with open(patch_metadata_path, "r") as metadata_yaml:
patch_metadata = yaml.safe_load(metadata_yaml)
patch_metadata["name"] = patch_name
return patch_metadata
def set_patch_transform(self, transform: Callable) -> None:
"""Set the transformation function to process a patch
Args:
transform (Callable): Transformation function
"""
self.patch_transform = transform
# patch processing
def process_patch_image(
self, patch_name: str, transform: Callable = None
) -> Tuple[torch.Tensor, dict]:
"""Process one patch: Load from disk, apply transformation if needed. ToTensor is applied automatically
Args:
patch_name (Path): Name of patch to load, including patch suffix, e.g., wsi_1_1.png
transform (Callable, optional): Optional Patch-Transformation
Returns:
Tuple[torch.Tensor, dict]:
* torch.Tensor: patch as torch.tensor (:,:,3)
* dict: patch metadata as dictionary
"""
patch = Image.open(self.patched_slide_path / "patches" / patch_name)
if transform:
patch = transform(patch)
metadata = self.load_patch_metadata(patch_name)
return patch, metadata
def get_number_patches(self) -> int:
"""Return the number of patches for this WSI
Returns:
int: number of patches
"""
return int(len(self.patches_list))
def get_patches(
self, transform: Callable = None
) -> Tuple[torch.Tensor, list, list]:
"""Get all patches for one image
Args:
transform (Callable, optional): Optional Patch-Transformation
Returns:
Tuple[torch.Tensor, list]:
* patched image: Shape of torch.Tensor(num_patches, 3, :, :)
* coordinates as list metadata_dictionary
"""
if self.logger is not None:
self.logger.warning(f"Loading {self.get_number_patches()} patches!")
patches = []
metadata = []
for patch in self.patches_list:
transformed_patch, meta = self.process_patch_image(patch, transform)
patches.append(transformed_patch)
metadata.append(meta)
patches = torch.stack(patches)
return patches, metadata
def load_embedding(self) -> torch.Tensor:
"""Load embedding from subfolder patched_slide_path/embedding/
Raises:
FileNotFoundError: If embedding is not given
Returns:
torch.Tensor: WSI embedding
"""
embedding_path = (
self.patched_slide_path / "embeddings" / f"{self.embedding_name}.pt"
)
if embedding_path.is_file():
embedding = torch.load(embedding_path)
return embedding
else:
raise FileNotFoundError(
f"Embeddings for WSI {self.slide_path} cannot be found in path {embedding_path}"
)