Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
# Running an Experiment Using CellViT cell segmentation network | |
# | |
# @ Fabian Hörst, fabian.hoerst@uk-essen.de | |
# Institute for Artifical Intelligence in Medicine, | |
# University Medicine Essen | |
import inspect | |
import os | |
import sys | |
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) | |
parentdir = os.path.dirname(currentdir) | |
sys.path.insert(0, parentdir) | |
import wandb | |
from base_ml.base_cli import ExperimentBaseParser | |
from cell_segmentation.experiments.experiment_cellvit_pannuke import ( | |
ExperimentCellVitPanNuke, | |
) | |
from cell_segmentation.experiments.experiment_cellvit_conic import ( | |
ExperimentCellViTCoNic, | |
) | |
from cell_segmentation.inference.inference_cellvit_experiment_pannuke import ( | |
InferenceCellViT, | |
) | |
if __name__ == "__main__": | |
# Parse arguments | |
configuration_parser = ExperimentBaseParser() | |
configuration = configuration_parser.parse_arguments() | |
if configuration["data"]["dataset"].lower() == "pannuke": | |
experiment_class = ExperimentCellVitPanNuke | |
elif configuration["data"]["dataset"].lower() == "conic": | |
experiment_class = ExperimentCellViTCoNic | |
# Setup experiment | |
if "checkpoint" in configuration: | |
# continue checkpoint | |
experiment = experiment_class( | |
default_conf=configuration, checkpoint=configuration["checkpoint"] | |
) | |
outdir = experiment.run_experiment() | |
inference = InferenceCellViT( | |
run_dir=outdir, | |
gpu=configuration["gpu"], | |
checkpoint_name=configuration["eval_checkpoint"], | |
magnification=configuration["data"].get("magnification", 40), | |
) | |
( | |
trained_model, | |
inference_dataloader, | |
dataset_config, | |
) = inference.setup_patch_inference() | |
inference.run_patch_inference( | |
trained_model, inference_dataloader, dataset_config, generate_plots=False | |
) | |
else: | |
experiment = experiment_class(default_conf=configuration) | |
if configuration["run_sweep"] is True: | |
# run new sweep | |
sweep_configuration = experiment_class.extract_sweep_arguments( | |
configuration | |
) | |
os.environ["WANDB_DIR"] = os.path.abspath( | |
configuration["logging"]["wandb_dir"] | |
) | |
sweep_id = wandb.sweep( | |
sweep=sweep_configuration, project=configuration["logging"]["project"] | |
) | |
wandb.agent(sweep_id=sweep_id, function=experiment.run_experiment) | |
elif "agent" in configuration and configuration["agent"] is not None: | |
# add agent to already existing sweep, not run sweep must be set to true | |
configuration["run_sweep"] = True | |
os.environ["WANDB_DIR"] = os.path.abspath( | |
configuration["logging"]["wandb_dir"] | |
) | |
wandb.agent( | |
sweep_id=configuration["agent"], function=experiment.run_experiment | |
) | |
else: | |
# casual run | |
outdir = experiment.run_experiment() | |
inference = InferenceCellViT( | |
run_dir=outdir, | |
gpu=configuration["gpu"], | |
checkpoint_name=configuration["eval_checkpoint"], | |
magnification=configuration["data"].get("magnification", 40), | |
) | |
( | |
trained_model, | |
inference_dataloader, | |
dataset_config, | |
) = inference.setup_patch_inference() | |
inference.run_patch_inference( | |
trained_model, | |
inference_dataloader, | |
dataset_config, | |
generate_plots=False, | |
) | |
wandb.finish() | |