lora_test / ppdiffusers /pipeline_utils.py
xiaozeng's picture
Upload with huggingface_hub
05654ff
raw
history blame
30.3 kB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2022 The HuggingFace Team. All rights reserved.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import inspect
import os
import tempfile
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Union
import numpy as np
import paddle
import paddle.nn as nn
import PIL
from huggingface_hub import (
create_repo,
get_hf_file_metadata,
hf_hub_url,
repo_type_and_id_from_hf_id,
upload_folder,
)
from huggingface_hub.utils import EntryNotFoundError
from packaging import version
from PIL import Image
from tqdm.auto import tqdm
from . import FastDeployRuntimeModel
from .configuration_utils import ConfigMixin
from .utils import PPDIFFUSERS_CACHE, BaseOutput, deprecate, logging
INDEX_FILE = "model_state.pdparams"
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
DUMMY_MODULES_FOLDER = "ppdiffusers.utils"
PADDLENLP_DUMMY_MODULES_FOLDER = "paddlenlp.transformers.utils"
logger = logging.get_logger(__name__)
LOADABLE_CLASSES = {
"ppdiffusers": {
"ModelMixin": ["save_pretrained", "from_pretrained"],
"SchedulerMixin": ["save_pretrained", "from_pretrained"],
"DiffusionPipeline": ["save_pretrained", "from_pretrained"],
"FastDeployRuntimeModel": ["save_pretrained", "from_pretrained"],
},
"paddlenlp.transformers": {
"PretrainedTokenizer": ["save_pretrained", "from_pretrained"],
"PretrainedModel": ["save_pretrained", "from_pretrained"],
"FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
"ProcessorMixin": ["save_pretrained", "from_pretrained"],
"ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
},
}
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])
@dataclass
class ImagePipelineOutput(BaseOutput):
"""
Output class for image pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
"""
images: Union[List[PIL.Image.Image], np.ndarray]
@dataclass
class AudioPipelineOutput(BaseOutput):
"""
Output class for audio pipelines.
Args:
audios (`np.ndarray`)
List of denoised samples of shape `(batch_size, num_channels, sample_rate)`. Numpy array present the
denoised audio samples of the diffusion pipeline.
"""
audios: np.ndarray
class DiffusionPipeline(ConfigMixin):
r"""
Base class for all models.
[`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines
and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to:
- move all Paddle modules to the device of your choice
- enabling/disabling the progress bar for the denoising iteration
Class attributes:
- **config_name** (`str`) -- name of the config file that will store the class and module names of all
- **_optional_components** (List[`str`]) -- list of all components that are optional so they don't have to be
passed for the pipeline to function (should be overridden by subclasses).
"""
config_name = "model_index.json"
_optional_components = []
def register_modules(self, **kwargs):
# import it here to avoid circular import
from . import pipelines
for name, module in kwargs.items():
# retrieve library
if module is None:
register_dict = {name: (None, None)}
else:
# TODO (junnyu) support paddlenlp.transformers
if "paddlenlp" in module.__module__.split(".") or "ppnlp_patch_utils" in module.__module__.split("."):
library = "paddlenlp.transformers"
else:
library = module.__module__.split(".")[0]
# check if the module is a pipeline module
pipeline_dir = module.__module__.split(".")[-2] if len(module.__module__.split(".")) > 2 else None
path = module.__module__.split(".")
is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
# if library is not in LOADABLE_CLASSES, then it is a custom module.
# Or if it's a pipeline module, then the module is inside the pipeline
# folder so we set the library to module name.
if library not in LOADABLE_CLASSES or is_pipeline_module:
library = pipeline_dir
# retrieve class_name
class_name = module.__class__.__name__
register_dict = {name: (library, class_name)}
# save model index config
self.register_to_config(**register_dict)
# set models
setattr(self, name, module)
def save_pretrained(self, save_directory: Union[str, os.PathLike]):
"""
Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to
a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading
method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to which to save. Will be created if it doesn't exist.
"""
self.save_config(save_directory)
model_index_dict = dict(self.config)
model_index_dict.pop("_class_name")
# TODO (junnyu) support old version
model_index_dict.pop("_diffusers_paddle_version", None)
model_index_dict.pop("_diffusers_version", None)
model_index_dict.pop("_ppdiffusers_version", None)
model_index_dict.pop("_module", None)
expected_modules, optional_kwargs = self._get_signature_keys(self)
def is_saveable_module(name, value):
if name not in expected_modules:
return False
if name in self._optional_components and value[0] is None:
return False
return True
model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
for pipeline_component_name in model_index_dict.keys():
sub_model = getattr(self, pipeline_component_name)
model_cls = sub_model.__class__
save_method_name = None
# search for the model's base class in LOADABLE_CLASSES
for library_name, library_classes in LOADABLE_CLASSES.items():
library = importlib.import_module(library_name)
for base_class, save_load_methods in library_classes.items():
class_candidate = getattr(library, base_class, None)
if class_candidate is not None and issubclass(model_cls, class_candidate):
# if we found a suitable base class in LOADABLE_CLASSES then grab its save method
save_method_name = save_load_methods[0]
break
if save_method_name is not None:
break
save_method = getattr(sub_model, save_method_name)
save_method(os.path.join(save_directory, pipeline_component_name))
def save_to_hf_hub(
self,
repo_id: str,
private: Optional[bool] = None,
commit_message: Optional[str] = None,
revision: Optional[str] = None,
create_pr: bool = False,
):
"""
Uploads all elements of this pipeline to a new HuggingFace Hub repository.
Args:
repo_id (str): Repository name for your model/tokenizer in the Hub.
private (bool, optional): Whether the model/tokenizer is set to private
commit_message (str, optional) — The summary / title / first line of the generated commit. Defaults to: f"Upload {path_in_repo} with huggingface_hub"
revision (str, optional) — The git revision to commit from. Defaults to the head of the "main" branch.
create_pr (boolean, optional) — Whether or not to create a Pull Request with that commit. Defaults to False.
If revision is not set, PR is opened against the "main" branch. If revision is set and is a branch, PR is opened against this branch.
If revision is set and is not a branch name (example: a commit oid), an RevisionNotFoundError is returned by the server.
Returns: The url of the commit of your model in the given repository.
"""
repo_url = create_repo(repo_id, private=private, exist_ok=True)
# Infer complete repo_id from repo_url
# Can be different from the input `repo_id` if repo_owner was implicit
_, repo_owner, repo_name = repo_type_and_id_from_hf_id(repo_url)
repo_id = f"{repo_owner}/{repo_name}"
# Check if README file already exist in repo
try:
get_hf_file_metadata(hf_hub_url(repo_id=repo_id, filename="README.md", revision=revision))
has_readme = True
except EntryNotFoundError:
has_readme = False
with tempfile.TemporaryDirectory() as tmp_dir:
# save model
self.save_pretrained(tmp_dir)
# Add readme if does not exist
logger.info("README.md not found, adding the default README.md")
if not has_readme:
with open(os.path.join(tmp_dir, "README.md"), "w") as f:
f.write(f"---\nlibrary_name: ppdiffusers\n---\n# {repo_id}")
# Upload model and return
logger.info(f"Pushing to the {repo_id}. This might take a while")
return upload_folder(
repo_id=repo_id,
repo_type="model",
folder_path=tmp_dir,
commit_message=commit_message,
revision=revision,
create_pr=create_pr,
)
def to(self, paddle_device: Optional[str] = None):
if paddle_device is None:
return self
module_names, _, _ = self.extract_init_dict(dict(self.config))
for name in module_names.keys():
module = getattr(self, name)
if isinstance(module, nn.Layer):
if module.dtype == paddle.float16 and str(paddle_device) in ["cpu"]:
logger.warning(
"Pipelines loaded with `paddle_dtype=paddle.float16` cannot run with `cpu` device. It"
" is not recommended to move them to `cpu` as running them will fail. Please make"
" sure to use an accelerator to run the pipeline in inference, due to the lack of"
" support for`float16` operations on this device in Paddle. Please, remove the"
" `paddle_dtype=paddle.float16` argument, or use another device for inference."
)
module.to(paddle_device)
return self
@property
def device(self):
r"""
Returns:
`paddle.device`: The paddle device on which the pipeline is located.
"""
module_names, _, _ = self.extract_init_dict(dict(self.config))
for name in module_names.keys():
module = getattr(self, name)
if isinstance(module, nn.Layer):
return module.place
return "cpu"
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
r"""
Instantiate a Paddle diffusion pipeline from pre-trained pipeline weights.
The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated).
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
task.
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
weights are discarded.
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *model id* of a pretrained pipeline hosted inside in `https://bj.bcebos.com/paddlenlp/models/community`.
like `CompVis/stable-diffusion-v1-4`, `CompVis/ldm-text2im-large-256`.
- A path to a *directory* containing pipeline weights saved using
[`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`.
paddle_dtype (`str` or `paddle.dtype`, *optional*):
Override the default `paddle.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
will be automatically derived from the model's weights.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
from_hf_hub (bool, *optional*):
Whether to load from Hugging Face Hub. Defaults to False
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
specific pipeline class. The overwritten components are then directly passed to the pipelines
`__init__` method. See example below for more information.
Examples:
```py
>>> from ppdiffusers import DiffusionPipeline
>>> # Download pipeline from bos and cache.
>>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")
>>> # Download pipeline that requires an authorization token
>>> # For more information on access tokens, please refer to this section
>>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> # Use a different scheduler
>>> from ppdiffusers import LMSDiscreteScheduler
>>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
>>> pipeline.scheduler = scheduler
```
"""
cache_dir = kwargs.pop("cache_dir", PPDIFFUSERS_CACHE)
paddle_dtype = kwargs.pop("paddle_dtype", None)
# (TODO junnyu, we donot suuport this.)
# custom_pipeline = kwargs.pop("custom_pipeline", None)
# for fastdeploy model
runtime_options = kwargs.pop("runtime_options", None)
from_hf_hub = kwargs.pop("from_hf_hub", False)
# 1. Download the checkpoints and configs
if not os.path.isdir(pretrained_model_name_or_path):
config_dict = cls.load_config(
pretrained_model_name_or_path,
cache_dir=cache_dir,
from_hf_hub=from_hf_hub,
)
else:
config_dict = cls.load_config(pretrained_model_name_or_path)
# 2. Load the pipeline class
if cls != DiffusionPipeline:
pipeline_class = cls
else:
diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
pipeline_class = getattr(diffusers_module, config_dict["_class_name"])
# To be removed in 1.0.0
# TODO (junnyu) support old version
_ppdiffusers_version = (
config_dict["_diffusers_paddle_version"]
if "_diffusers_paddle_version" in config_dict
else config_dict["_ppdiffusers_version"]
)
if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
version.parse(_ppdiffusers_version).base_version
) <= version.parse("0.5.1"):
from . import (
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
)
pipeline_class = StableDiffusionInpaintPipelineLegacy
deprecation_message = (
"You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
" better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
" checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
f" checkpoint {pretrained_model_name_or_path} to the format of"
" https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
" the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
)
deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)
# some modules can be passed directly to the init
# in this case they are already instantiated in `kwargs`
# extract them here
expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
# define init kwargs
init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict}
init_kwargs = {**init_kwargs, **passed_pipe_kwargs}
# remove `null` components
def load_module(name, value):
if value[0] is None:
return False
if name in passed_class_obj and passed_class_obj[name] is None:
return False
return True
init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
if len(unused_kwargs) > 0:
logger.warning(
f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
)
# import it here to avoid circular import
from . import pipelines
# 3. Load each module in the pipeline
for name, (library_name, class_name) in init_dict.items():
# TODO (junnyu) support old model_index.json
if library_name == "diffusers_paddle":
library_name = "ppdiffusers"
is_pipeline_module = hasattr(pipelines, library_name)
loaded_sub_model = None
# if the model is in a pipeline module, then we load it from the pipeline
if name in passed_class_obj:
# 1. check that passed_class_obj has correct parent class
if not is_pipeline_module:
library = importlib.import_module(library_name)
class_obj = getattr(library, class_name)
importable_classes = LOADABLE_CLASSES[library_name]
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
expected_class_obj = None
for class_name, class_candidate in class_candidates.items():
if class_candidate is not None and issubclass(class_obj, class_candidate):
expected_class_obj = class_candidate
if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
raise ValueError(
f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
f" {expected_class_obj}"
)
else:
logger.warning(
f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
" has the correct type"
)
# set passed class object
loaded_sub_model = passed_class_obj[name]
elif is_pipeline_module:
pipeline_module = getattr(pipelines, library_name)
class_obj = getattr(pipeline_module, class_name)
importable_classes = ALL_IMPORTABLE_CLASSES
class_candidates = {c: class_obj for c in importable_classes.keys()}
else:
# else we just import it from the library.
library = importlib.import_module(library_name)
class_obj = getattr(library, class_name)
importable_classes = LOADABLE_CLASSES[library_name]
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
if loaded_sub_model is None:
load_method_name = None
for class_name, class_candidate in class_candidates.items():
if class_candidate is not None and issubclass(class_obj, class_candidate):
load_method_name = importable_classes[class_name][1]
if load_method_name is None:
none_module = class_obj.__module__
is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
PADDLENLP_DUMMY_MODULES_FOLDER
)
if is_dummy_path and "dummy" in none_module:
# call class_obj for nice error message of missing requirements
class_obj()
raise ValueError(
f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
)
load_method = getattr(class_obj, load_method_name)
loading_kwargs = {
"from_hf_hub": from_hf_hub,
"cache_dir": cache_dir,
}
if issubclass(class_obj, FastDeployRuntimeModel):
if isinstance(runtime_options, dict):
options = runtime_options.get(name, None)
else:
options = runtime_options
loading_kwargs["runtime_options"] = options
if os.path.isdir(pretrained_model_name_or_path):
model_path_dir = os.path.join(pretrained_model_name_or_path, name)
elif from_hf_hub:
model_path_dir = pretrained_model_name_or_path
loading_kwargs["subfolder"] = name
else:
# BOS does not require 'subfolder'. We simpy concat the model name with the subfolder
model_path_dir = pretrained_model_name_or_path + "/" + name
loaded_sub_model = load_method(model_path_dir, **loading_kwargs)
# TODO junnyu find a better way to covert to float16
if isinstance(loaded_sub_model, nn.Layer):
if paddle_dtype is not None and next(loaded_sub_model.named_parameters())[1].dtype != paddle_dtype:
loaded_sub_model = loaded_sub_model.to(dtype=paddle_dtype)
# paddlenlp model is training mode not eval mode
loaded_sub_model.eval()
init_kwargs[name] = loaded_sub_model # UNet(...), # DiffusionScheduler(...)
# 4. Potentially add passed objects if expected
missing_modules = set(expected_modules) - set(init_kwargs.keys())
passed_modules = list(passed_class_obj.keys())
optional_modules = pipeline_class._optional_components
if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
for module in missing_modules:
init_kwargs[module] = passed_class_obj.get(module, None)
elif len(missing_modules) > 0:
passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
raise ValueError(
f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
)
# 5. Instantiate the pipeline
model = pipeline_class(**init_kwargs)
return model
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
must be a multiple of `slice_size`.
"""
self.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
def set_attention_slice(self, slice_size: Optional[int]):
module_names, _, _ = self.extract_init_dict(dict(self.config))
for module_name in module_names:
module = getattr(self, module_name)
if isinstance(module, nn.Layer) and hasattr(module, "set_attention_slice"):
module.set_attention_slice(slice_size)
@staticmethod
def _get_signature_keys(obj):
parameters = inspect.signature(obj.__init__).parameters
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
expected_modules = set(required_parameters.keys()) - set(["self"])
return expected_modules, optional_parameters
@property
def components(self) -> Dict[str, Any]:
r"""
The `self.components` property can be useful to run different pipelines with the same weights and
configurations to not have to re-allocate memory.
Examples:
```py
>>> from ppdiffusers import (
... StableDiffusionPipeline,
... StableDiffusionImg2ImgPipeline,
... StableDiffusionInpaintPipeline,
... )
>>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
>>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
```
Returns:
A dictionaly containing all the modules needed to initialize the pipeline.
"""
expected_modules, optional_parameters = self._get_signature_keys(self)
components = {
k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
}
if set(components.keys()) != expected_modules:
raise ValueError(
f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
f" {expected_modules} to be defined, but {components} are defined."
)
return components
@staticmethod
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def progress_bar(self, iterable=None, total=None):
if not hasattr(self, "_progress_bar_config"):
self._progress_bar_config = {}
elif not isinstance(self._progress_bar_config, dict):
raise ValueError(
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
)
if iterable is not None:
return tqdm(iterable, **self._progress_bar_config)
elif total is not None:
return tqdm(total=total, **self._progress_bar_config)
else:
raise ValueError("Either `total` or `iterable` has to be defined.")
def set_progress_bar_config(self, **kwargs):
self._progress_bar_config = kwargs