Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torchaudio | |
| from torchinfo import summary | |
| ''' Res2Conv1d + BatchNorm1d + ReLU | |
| ''' | |
| class Res2Conv1dReluBn(nn.Module): | |
| ''' | |
| in_channels == out_channels == channels | |
| ''' | |
| def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False, scale=4): | |
| super().__init__() | |
| assert channels % scale == 0, "{} % {} != 0".format(channels, scale) | |
| self.scale = scale | |
| self.width = channels // scale | |
| self.nums = scale if scale == 1 else scale - 1 | |
| self.convs = [] | |
| self.bns = [] | |
| for i in range(self.nums): | |
| self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias)) | |
| self.bns.append(nn.BatchNorm1d(self.width)) | |
| self.convs = nn.ModuleList(self.convs) | |
| self.bns = nn.ModuleList(self.bns) | |
| def forward(self, x): | |
| out = [] | |
| spx = torch.split(x, self.width, 1) | |
| for i in range(self.nums): | |
| if i == 0: | |
| sp = spx[i] | |
| else: | |
| sp = sp + spx[i] | |
| # Order: conv -> relu -> bn | |
| sp = self.convs[i](sp) | |
| sp = F.relu(self.bns[i](sp)) | |
| out.append(sp) | |
| if self.scale != 1: | |
| out.append(spx[self.nums]) | |
| out = torch.cat(out, dim=1) | |
| return out | |
| ''' Conv1d + BatchNorm1d + ReLU | |
| ''' | |
| class Conv1dReluBn(nn.Module): | |
| def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False): | |
| super().__init__() | |
| self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias) | |
| self.bn = nn.BatchNorm1d(out_channels) | |
| def forward(self, x): | |
| return F.relu(self.bn(self.conv(x))) | |
| ''' The SE connection of 1D case. | |
| ''' | |
| class SE_Connect(nn.Module): | |
| def __init__(self, channels, s=2): | |
| super().__init__() | |
| assert channels % s == 0, "{} % {} != 0".format(channels, s) | |
| self.linear1 = nn.Linear(channels, channels // s) | |
| self.linear2 = nn.Linear(channels // s, channels) | |
| def forward(self, x): | |
| out = x.mean(dim=2) | |
| out = F.relu(self.linear1(out)) | |
| out = torch.sigmoid(self.linear2(out)) | |
| out = x * out.unsqueeze(2) | |
| return out | |
| ''' SE-Res2Block. | |
| Note: residual connection is implemented in the ECAPA_TDNN.yaml model, not here. | |
| ''' | |
| class SE_Res2Block(nn.Module): | |
| def __init__(self, channels, kernel_size, stride, padding, dilation, scale): | |
| super().__init__() | |
| self.block = nn.Sequential( | |
| Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0), | |
| Res2Conv1dReluBn(channels, kernel_size, stride, padding, dilation, scale=scale), | |
| Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0), | |
| SE_Connect(channels) | |
| ) | |
| def forward(self, x): | |
| out = self.block(x) | |
| return out + x | |
| ''' Attentive weighted mean and standard deviation pooling. | |
| ''' | |
| class AttentiveStatsPool(nn.Module): | |
| def __init__(self, in_dim, bottleneck_dim): | |
| super().__init__() | |
| # Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs. | |
| self.linear1 = nn.Conv1d(in_dim, bottleneck_dim, kernel_size=1) # equals W and b in the paper | |
| self.linear2 = nn.Conv1d(bottleneck_dim, in_dim, kernel_size=1) # equals V and k in the paper | |
| def forward(self, x): | |
| # DON'T use ReLU here! In experiments, I find ReLU hard to converge. | |
| alpha = torch.tanh(self.linear1(x)) | |
| alpha = torch.softmax(self.linear2(alpha), dim=2) | |
| mean = torch.sum(alpha * x, dim=2) | |
| residuals = torch.sum(alpha * x ** 2, dim=2) - mean ** 2 | |
| std = torch.sqrt(residuals.clamp(min=1e-9)) | |
| return torch.cat([mean, std], dim=1) | |
| ''' Implementation of | |
| "ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification". | |
| Note that we DON'T concatenate the last frame-wise layer with non-weighted mean and standard deviation, | |
| because it brings little improvment but significantly increases model parameters. | |
| As a result, this implementation basically equals the A.2 of Table 2 in the paper. | |
| ''' | |
| class ECAPA_TDNN_br(nn.Module): | |
| def __init__(self, in_channels=80, channels=512, embd_dim=192): | |
| super().__init__() | |
| self.torchfb = torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_fft=512, win_length=400, | |
| hop_length=160, f_min=0.0, f_max=8000, pad=0, n_mels=80) | |
| self.instancenorm = nn.InstanceNorm1d(40) | |
| self.layer1 = Conv1dReluBn(in_channels, channels, kernel_size=5, padding=2) | |
| self.layer2 = SE_Res2Block(channels, kernel_size=3, stride=1, padding=2, dilation=2, scale=8) | |
| self.layer3 = SE_Res2Block(channels, kernel_size=3, stride=1, padding=3, dilation=3, scale=8) | |
| self.layer4 = SE_Res2Block(channels, kernel_size=3, stride=1, padding=4, dilation=4, scale=8) | |
| cat_channels = channels * 3 | |
| self.conv = nn.Conv1d(cat_channels, cat_channels, kernel_size=1) | |
| self.pooling = AttentiveStatsPool(cat_channels, 128) | |
| self.bn1 = nn.BatchNorm1d(cat_channels * 2) | |
| self.linear = nn.Linear(cat_channels * 2, embd_dim) | |
| self.bn2 = nn.BatchNorm1d(embd_dim) | |
| def forward(self, x): | |
| x = self.torchfb(x) + 1e-6 | |
| x = x.log() | |
| x = self.instancenorm(x) | |
| # print(x.shape) | |
| # x = x.transpose(1, 2) | |
| out1 = self.layer1(x) | |
| out2 = self.layer2(out1) + out1 | |
| out3 = self.layer3(out1 + out2) + out1 + out2 | |
| out4 = self.layer4(out1 + out2 + out3) + out1 + out2 + out3 | |
| out = torch.cat([out2, out3, out4], dim=1) | |
| out = F.relu(self.conv(out)) | |
| out = self.bn1(self.pooling(out)) | |
| out = self.bn2(self.linear(out)) | |
| return out | |
| if __name__ == '__main__': | |
| # Input size: batch_size * seq_len * feat_dim | |
| x = torch.zeros(32, 32240).cuda() | |
| model = ECAPA_TDNN_br(in_channels=80, channels=512, embd_dim=192) | |
| # print(model) | |
| summary(model, input_size=(tuple(x.shape))) | |
| out = model(x) | |
| print(out.shape) # should be [2, 192] | |