xiaowang7777 commited on
Commit
33ea1fe
1 Parent(s): 5dbb4ff
app.py CHANGED
@@ -1,13 +1,28 @@
1
  import gradio as gr
2
  from transformers import pipeline
3
  import torch
 
 
 
 
4
 
5
  nstruct_pipeline_3b = pipeline(model="fnlp/moss-moon-003-sft-int4", torch_dtype=torch.float, trust_remote_code=True,
6
  device_map="auto")
 
 
 
 
 
 
 
 
 
 
 
7
 
8
 
9
  def generate(query, temperature, top_p, top_k, max_new_tokens):
10
- return nstruct_pipeline_3b(query, temperature, top_p, top_k, max_new_tokens)
11
 
12
 
13
  with gr.Blocks() as demo:
 
1
  import gradio as gr
2
  from transformers import pipeline
3
  import torch
4
+ from models.modeling_moss import MossForCausalLM
5
+ from models.tokenization_moss import MossTokenizer
6
+ from models.configuration_moss import MossConfig
7
+ from accelerate import init_empty_weights, load_checkpoint_and_dispatch
8
 
9
  nstruct_pipeline_3b = pipeline(model="fnlp/moss-moon-003-sft-int4", torch_dtype=torch.float, trust_remote_code=True,
10
  device_map="auto")
11
+ model_path = "fnlp/moss-moon-003-sft-int4"
12
+
13
+ config = MossConfig.from_pretrained(model_path)
14
+ tokenizer = MossTokenizer.from_pretrained(model_path)
15
+
16
+ with init_empty_weights():
17
+ raw_model = MossForCausalLM._from_config(config, torch_dtype=torch.float)
18
+ raw_model.tie_weights()
19
+ model = load_checkpoint_and_dispatch(
20
+ raw_model, model_path, device_map="auto", no_split_module_classes=["MossBlock"], dtype=torch.float
21
+ )
22
 
23
 
24
  def generate(query, temperature, top_p, top_k, max_new_tokens):
25
+ return model.generate(query, temperature, top_p, top_k, max_new_tokens)
26
 
27
 
28
  with gr.Blocks() as demo:
models/configuration_moss.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Moss model configuration"""
2
+
3
+ from transformers.utils import logging
4
+ from transformers.configuration_utils import PretrainedConfig
5
+
6
+
7
+ logger = logging.get_logger(__name__)
8
+
9
+
10
+ class MossConfig(PretrainedConfig):
11
+ r"""
12
+ This is the configuration class to store the configuration of a [`MossModel`]. It is used to instantiate a
13
+ Moss model according to the specified arguments, defining the model architecture. Instantiating a configuration
14
+ with the defaults will yield a similar configuration to that of the Moss
15
+ [fnlp/moss-moon-003-base](https://huggingface.co/fnlp/moss-moon-003-base) architecture. Configuration objects
16
+ inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from
17
+ [`PretrainedConfig`] for more information.
18
+
19
+ Args:
20
+ vocab_size (`int`, *optional*, defaults to 107008):
21
+ Vocabulary size of the Moss model. Defines the number of different tokens that can be represented by the
22
+ `inputs_ids` passed when calling [`MossModel`].
23
+ n_positions (`int`, *optional*, defaults to 2048):
24
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
25
+ just in case (e.g., 512 or 1024 or 2048).
26
+ n_embd (`int`, *optional*, defaults to 4096):
27
+ Dimensionality of the embeddings and hidden states.
28
+ n_layer (`int`, *optional*, defaults to 28):
29
+ Number of hidden layers in the Transformer encoder.
30
+ n_head (`int`, *optional*, defaults to 16):
31
+ Number of attention heads for each attention layer in the Transformer encoder.
32
+ rotary_dim (`int`, *optional*, defaults to 64):
33
+ Number of dimensions in the embedding that Rotary Position Embedding is applied to.
34
+ n_inner (`int`, *optional*, defaults to None):
35
+ Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
36
+ activation_function (`str`, *optional*, defaults to `"gelu_new"`):
37
+ Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
38
+ resid_pdrop (`float`, *optional*, defaults to 0.1):
39
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
40
+ embd_pdrop (`int`, *optional*, defaults to 0.1):
41
+ The dropout ratio for the embeddings.
42
+ attn_pdrop (`float`, *optional*, defaults to 0.1):
43
+ The dropout ratio for the attention.
44
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
45
+ The epsilon to use in the layer normalization layers.
46
+ initializer_range (`float`, *optional*, defaults to 0.02):
47
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
48
+ use_cache (`bool`, *optional*, defaults to `True`):
49
+ Whether or not the model should return the last key/values attentions (not used by all models).
50
+
51
+ Example:
52
+
53
+ ```python
54
+ >>> from modeling_moss import MossModel
55
+ >>> from configuration_moss import MossConfig
56
+
57
+ >>> # Initializing a moss-moon-003-base configuration
58
+ >>> configuration = MossConfig()
59
+
60
+ >>> # Initializing a model (with random weights) from the configuration
61
+ >>> model = MossModel(configuration)
62
+
63
+ >>> # Accessing the model configuration
64
+ >>> configuration = model.config
65
+ ```"""
66
+
67
+ model_type = "moss"
68
+ attribute_map = {
69
+ "max_position_embeddings": "n_positions",
70
+ "hidden_size": "n_embd",
71
+ "num_attention_heads": "n_head",
72
+ "num_hidden_layers": "n_layer",
73
+ }
74
+
75
+ def __init__(
76
+ self,
77
+ vocab_size=107008,
78
+ n_positions=2048,
79
+ n_ctx=2048,
80
+ n_embd=4096,
81
+ n_layer=28,
82
+ n_head=16,
83
+ rotary_dim=64,
84
+ n_inner=None,
85
+ activation_function="gelu_new",
86
+ resid_pdrop=0.0,
87
+ embd_pdrop=0.0,
88
+ attn_pdrop=0.0,
89
+ layer_norm_epsilon=1e-5,
90
+ initializer_range=0.02,
91
+ use_cache=True,
92
+ bos_token_id=106028,
93
+ eos_token_id=106068,
94
+ tie_word_embeddings=False,
95
+ wbits=32,
96
+ groupsize=128,
97
+ **kwargs,
98
+ ):
99
+ self.vocab_size = vocab_size
100
+ self.n_ctx = n_ctx
101
+ self.n_positions = n_positions
102
+ self.n_embd = n_embd
103
+ self.n_layer = n_layer
104
+ self.n_head = n_head
105
+ self.n_inner = n_inner
106
+ self.rotary_dim = rotary_dim
107
+ self.activation_function = activation_function
108
+ self.resid_pdrop = resid_pdrop
109
+ self.embd_pdrop = embd_pdrop
110
+ self.attn_pdrop = attn_pdrop
111
+ self.layer_norm_epsilon = layer_norm_epsilon
112
+ self.initializer_range = initializer_range
113
+ self.use_cache = use_cache
114
+ self.wbits = wbits
115
+ self.groupsize = groupsize
116
+
117
+ self.bos_token_id = bos_token_id
118
+ self.eos_token_id = eos_token_id
119
+
120
+ super().__init__(
121
+ bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
122
+ )
123
+
models/custom_autotune.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #https://github.com/fpgaminer/GPTQ-triton
2
+ """
3
+ Mostly the same as the autotuner in Triton, but with a few changes like using 40 runs instead of 100.
4
+ """
5
+
6
+ import builtins
7
+ import math
8
+ import time
9
+ from typing import Dict
10
+
11
+ import triton
12
+
13
+
14
+ class Autotuner(triton.KernelInterface):
15
+ def __init__(self, fn, arg_names, configs, key, reset_to_zero, prune_configs_by: Dict = None, nearest_power_of_two: bool = False):
16
+ '''
17
+ :param prune_configs_by: a dict of functions that are used to prune configs, fields:
18
+ 'perf_model': performance model used to predicate running time with different configs, returns running time
19
+ 'top_k': number of configs to bench
20
+ 'prune_num_stages_by'(optional): a function used to prune num_stages. It take configs:List[Config] as its input, and returns pruned configs.
21
+ 'nearest_power_of_two'(optional): whether to round key arguments to the nearest power of two when caching tuning results
22
+ '''
23
+ if not configs:
24
+ self.configs = [triton.Config({}, num_warps=4, num_stages=2)]
25
+ else:
26
+ self.configs = configs
27
+ self.key_idx = [arg_names.index(k) for k in key]
28
+ self.nearest_power_of_two = nearest_power_of_two
29
+ self.cache = {}
30
+ # hook to reset all required tensor to zeros before relaunching a kernel
31
+ self.hook = lambda args: 0
32
+ if reset_to_zero is not None:
33
+ self.reset_idx = [arg_names.index(k) for k in reset_to_zero]
34
+
35
+ def _hook(args):
36
+ for i in self.reset_idx:
37
+ args[i].zero_()
38
+ self.hook = _hook
39
+ self.arg_names = arg_names
40
+ # prune configs
41
+ if prune_configs_by:
42
+ perf_model, top_k = prune_configs_by['perf_model'], prune_configs_by['top_k']
43
+ if 'early_config_prune' in prune_configs_by:
44
+ early_config_prune = prune_configs_by['early_config_prune']
45
+ else:
46
+ perf_model, top_k, early_config_prune = None, None, None
47
+ self.perf_model, self.configs_top_k = perf_model, top_k
48
+ self.early_config_prune = early_config_prune
49
+ self.fn = fn
50
+
51
+ def _bench(self, *args, config, **meta):
52
+ # check for conflicts, i.e. meta-parameters both provided
53
+ # as kwargs and by the autotuner
54
+ conflicts = meta.keys() & config.kwargs.keys()
55
+ if conflicts:
56
+ raise ValueError(
57
+ f"Conflicting meta-parameters: {', '.join(conflicts)}."
58
+ " Make sure that you don't re-define auto-tuned symbols."
59
+ )
60
+ # augment meta-parameters with tunable ones
61
+ current = dict(meta, **config.kwargs)
62
+
63
+ def kernel_call():
64
+ if config.pre_hook:
65
+ config.pre_hook(self.nargs)
66
+ self.hook(args)
67
+ self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **current)
68
+ try:
69
+ # In testings using only 40 reps seems to be close enough and it appears to be what PyTorch uses
70
+ # PyTorch also sets fast_flush to True, but I didn't see any speedup so I'll leave the default
71
+ return triton.testing.do_bench(kernel_call, rep=40)
72
+ except triton.compiler.OutOfResources:
73
+ return float('inf')
74
+
75
+ def run(self, *args, **kwargs):
76
+ self.nargs = dict(zip(self.arg_names, args))
77
+ if len(self.configs) > 1:
78
+ key = tuple(args[i] for i in self.key_idx)
79
+
80
+ # This reduces the amount of autotuning by rounding the keys to the nearest power of two
81
+ # In my testing this gives decent results, and greatly reduces the amount of tuning required
82
+ if self.nearest_power_of_two:
83
+ key = tuple([2 ** int(math.log2(x) + 0.5) for x in key])
84
+
85
+ if key not in self.cache:
86
+ # prune configs
87
+ pruned_configs = self.prune_configs(kwargs)
88
+ bench_start = time.time()
89
+ timings = {config: self._bench(*args, config=config, **kwargs)
90
+ for config in pruned_configs}
91
+ bench_end = time.time()
92
+ self.bench_time = bench_end - bench_start
93
+ self.cache[key] = builtins.min(timings, key=timings.get)
94
+ self.hook(args)
95
+ self.configs_timings = timings
96
+ config = self.cache[key]
97
+ else:
98
+ config = self.configs[0]
99
+ self.best_config = config
100
+ if config.pre_hook is not None:
101
+ config.pre_hook(self.nargs)
102
+ return self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **kwargs, **config.kwargs)
103
+
104
+ def prune_configs(self, kwargs):
105
+ pruned_configs = self.configs
106
+ if self.early_config_prune:
107
+ pruned_configs = self.early_config_prune(self.configs, self.nargs)
108
+ if self.perf_model:
109
+ top_k = self.configs_top_k
110
+ if isinstance(top_k, float) and top_k <= 1.0:
111
+ top_k = int(len(self.configs) * top_k)
112
+ if len(pruned_configs) > top_k:
113
+ est_timing = {
114
+ config: self.perf_model(**self.nargs, **kwargs, **config.kwargs, num_stages=config.num_stages,
115
+ num_warps=config.num_warps)
116
+ for config in pruned_configs
117
+ }
118
+ pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[:top_k]
119
+ return pruned_configs
120
+
121
+ def warmup(self, *args, **kwargs):
122
+ self.nargs = dict(zip(self.arg_names, args))
123
+ for config in self.prune_configs(kwargs):
124
+ self.fn.warmup(
125
+ *args,
126
+ num_warps=config.num_warps,
127
+ num_stages=config.num_stages,
128
+ **kwargs,
129
+ **config.kwargs,
130
+ )
131
+ self.nargs = None
132
+
133
+
134
+ def autotune(configs, key, prune_configs_by=None, reset_to_zero=None, nearest_power_of_two=False):
135
+ """
136
+ Decorator for auto-tuning a :code:`triton.jit`'d function.
137
+ .. highlight:: python
138
+ .. code-block:: python
139
+ @triton.autotune(configs=[
140
+ triton.Config(meta={'BLOCK_SIZE': 128}, num_warps=4),
141
+ triton.Config(meta={'BLOCK_SIZE': 1024}, num_warps=8),
142
+ ],
143
+ key=['x_size'] # the two above configs will be evaluated anytime
144
+ # the value of x_size changes
145
+ )
146
+ @triton.jit
147
+ def kernel(x_ptr, x_size, **META):
148
+ BLOCK_SIZE = META['BLOCK_SIZE']
149
+ :note: When all the configurations are evaluated, the kernel will run multiple time.
150
+ This means that whatever value the kernel updates will be updated multiple times.
151
+ To avoid this undesired behavior, you can use the `reset_to_zero` argument, which
152
+ reset the value of the provided tensor to `zero` before running any configuration.
153
+ :param configs: a list of :code:`triton.Config` objects
154
+ :type configs: list[triton.Config]
155
+ :param key: a list of argument names whose change in value will trigger the evaluation of all provided configs.
156
+ :type key: list[str]
157
+ :param prune_configs_by: a dict of functions that are used to prune configs, fields:
158
+ 'perf_model': performance model used to predicate running time with different configs, returns running time
159
+ 'top_k': number of configs to bench
160
+ 'early_config_prune'(optional): a function used to do early prune (eg, num_stages). It take configs:List[Config] as its input, and returns pruned configs.
161
+ :param reset_to_zero: a list of argument names whose value will be reset to zero before evaluating any configs.
162
+ :type reset_to_zero: list[str]
163
+ """
164
+ def decorator(fn):
165
+ return Autotuner(fn, fn.arg_names, configs, key, reset_to_zero, prune_configs_by, nearest_power_of_two)
166
+
167
+ return decorator
models/modeling_moss.py ADDED
@@ -0,0 +1,738 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch Moss model."""
2
+
3
+ from typing import Optional, Tuple, Union
4
+
5
+ import torch
6
+ import torch.utils.checkpoint
7
+ from torch import nn
8
+ from torch.nn import CrossEntropyLoss
9
+ import transformers
10
+ from transformers.activations import ACT2FN
11
+ from transformers.modeling_utils import PreTrainedModel
12
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
13
+ from transformers.utils import (
14
+ add_code_sample_docstrings,
15
+ add_start_docstrings,
16
+ add_start_docstrings_to_model_forward,
17
+ logging
18
+ )
19
+
20
+ from .configuration_moss import MossConfig
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ _CHECKPOINT_FOR_DOC = "fnlp/moss-moon-003-base"
25
+ _CONFIG_FOR_DOC = "MossConfig"
26
+
27
+
28
+ MOSS_PRETRAINED_MODEL_ARCHIVE_LIST = [
29
+ "fnlp/moss-moon-003-base",
30
+ "fnlp/moss-moon-003-sft",
31
+ "fnlp/moss-moon-003-sft-plugin",
32
+ "fnlp/moss-moon-003-sft-int4",
33
+ "fnlp/moss-moon-003-sft-plugin-int4",
34
+ "fnlp/moss-moon-003-sft-int8",
35
+ "fnlp/moss-moon-003-sft-plugin-int8",
36
+ ]
37
+
38
+
39
+ # Copied from transformers.models.gptj.modeling_gptj.create_sinusoidal_positions
40
+ def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
41
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
42
+ sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.float), inv_freq).float()
43
+ return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
44
+
45
+
46
+ # Copied from transformers.models.gptj.modeling_gptj.rotate_every_two
47
+ def rotate_every_two(x: torch.Tensor) -> torch.Tensor:
48
+ x1 = x[:, :, :, ::2]
49
+ x2 = x[:, :, :, 1::2]
50
+ x = torch.stack((-x2, x1), dim=-1)
51
+ return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
52
+
53
+
54
+ # Copied from transformers.models.gptj.modeling_gptj.apply_rotary_pos_emb
55
+ def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor:
56
+ sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
57
+ cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
58
+ return (tensor * cos) + (rotate_every_two(tensor) * sin)
59
+
60
+
61
+ class MossAttention(nn.Module):
62
+ def __init__(self, config):
63
+ super().__init__()
64
+
65
+ max_positions = config.max_position_embeddings
66
+ self.register_buffer(
67
+ "causal_mask",
68
+ torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
69
+ 1, 1, max_positions, max_positions
70
+ ),
71
+ )
72
+
73
+ self.attn_dropout = nn.Dropout(config.attn_pdrop)
74
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
75
+
76
+ self.embed_dim = config.hidden_size
77
+ self.num_attention_heads = config.num_attention_heads
78
+ self.head_dim = self.embed_dim // self.num_attention_heads
79
+ if self.head_dim * self.num_attention_heads != self.embed_dim:
80
+ raise ValueError(
81
+ f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
82
+ f" `num_attention_heads`: {self.num_attention_heads})."
83
+ )
84
+ self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
85
+ self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False)
86
+
87
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
88
+ self.rotary_dim = config.rotary_dim
89
+ pos_embd_dim = self.rotary_dim or self.embed_dim
90
+ self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)
91
+
92
+ def _split_heads(self, x, n_head, dim_head, mp_num):
93
+ reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head))
94
+ reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:])
95
+ return reshaped
96
+
97
+ def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
98
+ """
99
+ Merges attn_head_size dim and num_attn_heads dim into n_ctx
100
+ """
101
+ if len(tensor.shape) == 5:
102
+ tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
103
+ elif len(tensor.shape) == 4:
104
+ tensor = tensor.permute(0, 2, 1, 3).contiguous()
105
+ else:
106
+ raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
107
+ new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
108
+ return tensor.view(new_shape)
109
+
110
+ def _attn(
111
+ self,
112
+ query,
113
+ key,
114
+ value,
115
+ attention_mask=None,
116
+ head_mask=None,
117
+ ):
118
+ # compute causal mask from causal mask buffer
119
+ query_length, key_length = query.size(-2), key.size(-2)
120
+ causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length]
121
+
122
+ # Keep the attention weights computation in fp32 to avoid overflow issues
123
+ query = query.to(torch.float32)
124
+ key = key.to(torch.float32)
125
+
126
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
127
+
128
+ attn_weights = attn_weights / self.scale_attn
129
+ mask_value = torch.finfo(attn_weights.dtype).min
130
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
131
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
132
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
133
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
134
+
135
+ if attention_mask is not None:
136
+ # Apply the attention mask
137
+ attn_weights = attn_weights + attention_mask
138
+
139
+ attn_weights = nn.Softmax(dim=-1)(attn_weights)
140
+ attn_weights = attn_weights.to(value.dtype)
141
+ attn_weights = self.attn_dropout(attn_weights)
142
+
143
+ # Mask heads if we want to
144
+ if head_mask is not None:
145
+ attn_weights = attn_weights * head_mask
146
+
147
+ attn_output = torch.matmul(attn_weights, value)
148
+
149
+ return attn_output, attn_weights
150
+
151
+ def forward(
152
+ self,
153
+ hidden_states: Optional[torch.FloatTensor],
154
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
155
+ attention_mask: Optional[torch.FloatTensor] = None,
156
+ position_ids: Optional[torch.LongTensor] = None,
157
+ head_mask: Optional[torch.FloatTensor] = None,
158
+ use_cache: Optional[bool] = False,
159
+ output_attentions: Optional[bool] = False,
160
+ ) -> Union[
161
+ Tuple[torch.Tensor, Tuple[torch.Tensor]],
162
+ Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
163
+ ]:
164
+ qkv = self.qkv_proj(hidden_states)
165
+ # TODO(enijkamp): factor out number of logical TPU-v4 cores or make forward pass agnostic
166
+ mp_num = 4
167
+ qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1))
168
+
169
+ local_dim = self.head_dim * self.num_attention_heads // mp_num
170
+ query, value, key = torch.split(qkv_split, local_dim, dim=-1)
171
+ query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num)
172
+ key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num)
173
+
174
+ value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num)
175
+ value = value.permute(0, 2, 1, 3)
176
+
177
+ embed_positions = self.embed_positions
178
+ if embed_positions.device != position_ids.device:
179
+ embed_positions = embed_positions.to(position_ids.device)
180
+ self.embed_positions = embed_positions
181
+
182
+ sincos = embed_positions[position_ids]
183
+ sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
184
+
185
+ if self.rotary_dim is not None:
186
+ k_rot = key[:, :, :, : self.rotary_dim]
187
+ k_pass = key[:, :, :, self.rotary_dim :]
188
+
189
+ q_rot = query[:, :, :, : self.rotary_dim]
190
+ q_pass = query[:, :, :, self.rotary_dim :]
191
+
192
+ k_rot = apply_rotary_pos_emb(k_rot, sin, cos)
193
+ q_rot = apply_rotary_pos_emb(q_rot, sin, cos)
194
+
195
+ key = torch.cat([k_rot, k_pass], dim=-1)
196
+ query = torch.cat([q_rot, q_pass], dim=-1)
197
+ else:
198
+ key = apply_rotary_pos_emb(key, sin, cos)
199
+ query = apply_rotary_pos_emb(query, sin, cos)
200
+
201
+ key = key.permute(0, 2, 1, 3)
202
+ query = query.permute(0, 2, 1, 3)
203
+
204
+ if layer_past is not None:
205
+ past_key = layer_past[0]
206
+ past_value = layer_past[1]
207
+ key = torch.cat((past_key, key), dim=-2)
208
+ value = torch.cat((past_value, value), dim=-2)
209
+
210
+ if use_cache is True:
211
+ present = (key, value)
212
+ else:
213
+ present = None
214
+
215
+ # compute self-attention: V x Softmax(QK^T)
216
+ attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
217
+
218
+ attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
219
+ attn_output = self.out_proj(attn_output)
220
+ attn_output = self.resid_dropout(attn_output)
221
+
222
+ outputs = (attn_output, present)
223
+ if output_attentions:
224
+ outputs += (attn_weights,)
225
+
226
+ return outputs # a, present, (attentions)
227
+
228
+
229
+ # Copied from transformers.models.gptj.modeling_gptj.GPTJMLP with GPTJ->Moss
230
+ class MossMLP(nn.Module):
231
+ def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim
232
+ super().__init__()
233
+ embed_dim = config.n_embd
234
+
235
+ self.fc_in = nn.Linear(embed_dim, intermediate_size)
236
+ self.fc_out = nn.Linear(intermediate_size, embed_dim)
237
+
238
+ self.act = ACT2FN[config.activation_function]
239
+ self.dropout = nn.Dropout(config.resid_pdrop)
240
+
241
+ def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
242
+ hidden_states = self.fc_in(hidden_states)
243
+ hidden_states = self.act(hidden_states)
244
+ hidden_states = self.fc_out(hidden_states)
245
+ hidden_states = self.dropout(hidden_states)
246
+ return hidden_states
247
+
248
+
249
+ # Copied from transformers.models.gptj.modeling_gptj.GPTJBlock with GPTJ->Moss
250
+ class MossBlock(nn.Module):
251
+ def __init__(self, config):
252
+ super().__init__()
253
+ inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
254
+ self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
255
+ self.attn = MossAttention(config)
256
+ self.mlp = MossMLP(inner_dim, config)
257
+
258
+ def forward(
259
+ self,
260
+ hidden_states: Optional[torch.FloatTensor],
261
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
262
+ attention_mask: Optional[torch.FloatTensor] = None,
263
+ position_ids: Optional[torch.LongTensor] = None,
264
+ head_mask: Optional[torch.FloatTensor] = None,
265
+ use_cache: Optional[bool] = False,
266
+ output_attentions: Optional[bool] = False,
267
+ ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
268
+ residual = hidden_states
269
+ hidden_states = self.ln_1(hidden_states)
270
+ attn_outputs = self.attn(
271
+ hidden_states=hidden_states,
272
+ layer_past=layer_past,
273
+ attention_mask=attention_mask,
274
+ position_ids=position_ids,
275
+ head_mask=head_mask,
276
+ use_cache=use_cache,
277
+ output_attentions=output_attentions,
278
+ )
279
+ attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
280
+ outputs = attn_outputs[1:]
281
+
282
+ feed_forward_hidden_states = self.mlp(hidden_states)
283
+ hidden_states = attn_output + feed_forward_hidden_states + residual
284
+
285
+ if use_cache:
286
+ outputs = (hidden_states,) + outputs
287
+ else:
288
+ outputs = (hidden_states,) + outputs[1:]
289
+
290
+ return outputs # hidden_states, present, (attentions)
291
+
292
+
293
+ class MossPreTrainedModel(PreTrainedModel):
294
+ """
295
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
296
+ models.
297
+ """
298
+
299
+ config_class = MossConfig
300
+ base_model_prefix = "transformer"
301
+ supports_gradient_checkpointing = True
302
+ _no_split_modules = ["MossBlock"]
303
+
304
+ def __init__(self, *inputs, **kwargs):
305
+ super().__init__(*inputs, **kwargs)
306
+
307
+ def _init_weights(self, module):
308
+ """Initialize the weights."""
309
+ if isinstance(module, (nn.Linear,)):
310
+ # Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
311
+ # cf https://github.com/pytorch/pytorch/pull/5617
312
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
313
+ if module.bias is not None:
314
+ module.bias.data.zero_()
315
+ elif isinstance(module, nn.Embedding):
316
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
317
+ if module.padding_idx is not None:
318
+ module.weight.data[module.padding_idx].zero_()
319
+ elif isinstance(module, nn.LayerNorm):
320
+ module.bias.data.zero_()
321
+ module.weight.data.fill_(1.0)
322
+
323
+ def _set_gradient_checkpointing(self, module, value=False):
324
+ if isinstance(module, MossModel):
325
+ module.gradient_checkpointing = value
326
+
327
+
328
+ MOSS_START_DOCSTRING = r"""
329
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
330
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
331
+ behavior.
332
+
333
+ Parameters:
334
+ config ([`MossConfig`]): Model configuration class with all the parameters of the model.
335
+ Initializing with a config file does not load the weights associated with the model, only the
336
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
337
+ """
338
+
339
+ MOSS_INPUTS_DOCSTRING = r"""
340
+ Args:
341
+ input_ids (`torch.LongTensor` of shape `({0})`):
342
+ Indices of input sequence tokens in the vocabulary.
343
+
344
+ Indices can be obtained using [`AutoProcenizer`]. See [`PreTrainedTokenizer.encode`] and
345
+ [`PreTrainedTokenizer.__call__`] for details.
346
+
347
+ [What are input IDs?](../glossary#input-ids)
348
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
349
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
350
+
351
+ - 1 for tokens that are **not masked**,
352
+ - 0 for tokens that are **masked**.
353
+
354
+ [What are attention masks?](../glossary#attention-mask)
355
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
356
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
357
+ 1]`:
358
+
359
+ - 0 corresponds to a *sentence A* token,
360
+ - 1 corresponds to a *sentence B* token.
361
+
362
+ [What are token type IDs?](../glossary#token-type-ids)
363
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
364
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
365
+ config.n_positions - 1]`.
366
+
367
+ [What are position IDs?](../glossary#position-ids)
368
+ head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
369
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
370
+
371
+ - 1 indicates the head is **not masked**,
372
+ - 0 indicates the head is **masked**.
373
+
374
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
375
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
376
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
377
+ model's internal embedding lookup matrix.
378
+ output_attentions (`bool`, *optional*):
379
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
380
+ tensors for more detail.
381
+ output_hidden_states (`bool`, *optional*):
382
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
383
+ more detail.
384
+ return_dict (`bool`, *optional*):
385
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
386
+ """
387
+
388
+
389
+ @add_start_docstrings(
390
+ "The bare Moss Model transformer outputting raw hidden-states without any specific head on top.",
391
+ MOSS_START_DOCSTRING,
392
+ )
393
+ class MossModel(MossPreTrainedModel):
394
+ def __init__(self, config):
395
+ super().__init__(config)
396
+
397
+ self.embed_dim = config.n_embd
398
+ self.vocab_size = config.vocab_size
399
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
400
+ self.drop = nn.Dropout(config.embd_pdrop)
401
+ self.h = nn.ModuleList([MossBlock(config) for _ in range(config.n_layer)])
402
+ self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
403
+ self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads)
404
+
405
+ self.gradient_checkpointing = False
406
+
407
+ # Initialize weights and apply final processing
408
+ self.post_init()
409
+
410
+ def get_input_embeddings(self):
411
+ return self.wte
412
+
413
+ def set_input_embeddings(self, new_embeddings):
414
+ self.wte = new_embeddings
415
+
416
+ @add_start_docstrings_to_model_forward(MOSS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
417
+ @add_code_sample_docstrings(
418
+ checkpoint=_CHECKPOINT_FOR_DOC,
419
+ output_type=BaseModelOutputWithPast,
420
+ config_class=_CONFIG_FOR_DOC,
421
+ )
422
+ def forward(
423
+ self,
424
+ input_ids: Optional[torch.LongTensor] = None,
425
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
426
+ attention_mask: Optional[torch.FloatTensor] = None,
427
+ token_type_ids: Optional[torch.LongTensor] = None,
428
+ position_ids: Optional[torch.LongTensor] = None,
429
+ head_mask: Optional[torch.FloatTensor] = None,
430
+ inputs_embeds: Optional[torch.FloatTensor] = None,
431
+ use_cache: Optional[bool] = None,
432
+ output_attentions: Optional[bool] = None,
433
+ output_hidden_states: Optional[bool] = None,
434
+ return_dict: Optional[bool] = None,
435
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
436
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
437
+ output_hidden_states = (
438
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
439
+ )
440
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
441
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
442
+
443
+ if input_ids is not None and inputs_embeds is not None:
444
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
445
+ elif input_ids is not None:
446
+ input_shape = input_ids.size()
447
+ input_ids = input_ids.view(-1, input_shape[-1])
448
+ batch_size = input_ids.shape[0]
449
+ elif inputs_embeds is not None:
450
+ input_shape = inputs_embeds.size()[:-1]
451
+ batch_size = inputs_embeds.shape[0]
452
+ else:
453
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
454
+
455
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
456
+
457
+ if token_type_ids is not None:
458
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
459
+
460
+ if position_ids is not None:
461
+ position_ids = position_ids.view(-1, input_shape[-1]).long()
462
+
463
+ if past_key_values is None:
464
+ past_length = 0
465
+ past_key_values = tuple([None] * len(self.h))
466
+ else:
467
+ past_length = past_key_values[0][0].size(-2)
468
+
469
+ if position_ids is None:
470
+ position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
471
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
472
+
473
+ # Attention mask.
474
+ if attention_mask is not None:
475
+ if batch_size <= 0:
476
+ raise ValueError("batch_size has to be defined and > 0")
477
+ attention_mask = attention_mask.view(batch_size, -1)
478
+ # We create a 3D attention mask from a 2D tensor mask.
479
+ # Sizes are [batch_size, 1, 1, to_seq_length]
480
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
481
+ # this attention mask is more simple than the triangular masking of causal attention
482
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
483
+ attention_mask = attention_mask[:, None, None, :]
484
+
485
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
486
+ # masked positions, this operation will create a tensor which is 0.0 for
487
+ # positions we want to attend and the dtype's smallest value for masked positions.
488
+ # Since we are adding it to the raw scores before the softmax, this is
489
+ # effectively the same as removing these entirely.
490
+ attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
491
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
492
+
493
+ # Prepare head mask if needed
494
+ # 1.0 in head_mask indicate we keep the head
495
+ # attention_probs has shape bsz x num_attention_heads x N x N
496
+ # head_mask has shape n_layer x batch x num_attention_heads x N x N
497
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
498
+
499
+ if inputs_embeds is None:
500
+ inputs_embeds = self.wte(input_ids)
501
+
502
+ hidden_states = inputs_embeds
503
+
504
+ if token_type_ids is not None:
505
+ token_type_embeds = self.wte(token_type_ids)
506
+ hidden_states = hidden_states + token_type_embeds
507
+
508
+ hidden_states = self.drop(hidden_states)
509
+
510
+ output_shape = input_shape + (hidden_states.size(-1),)
511
+
512
+ if self.gradient_checkpointing and self.training:
513
+ if use_cache:
514
+ logger.warning_once(
515
+ "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
516
+ "`use_cache=False`..."
517
+ )
518
+ use_cache = False
519
+
520
+ presents = () if use_cache else None
521
+ all_self_attentions = () if output_attentions else None
522
+ all_hidden_states = () if output_hidden_states else None
523
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
524
+ if output_hidden_states:
525
+ all_hidden_states = all_hidden_states + (hidden_states,)
526
+
527
+ if self.gradient_checkpointing and self.training:
528
+
529
+ def create_custom_forward(module):
530
+ def custom_forward(*inputs):
531
+ # None for past_key_value
532
+ return module(*inputs, use_cache, output_attentions)
533
+
534
+ return custom_forward
535
+
536
+ outputs = torch.utils.checkpoint.checkpoint(
537
+ create_custom_forward(block),
538
+ hidden_states,
539
+ None,
540
+ attention_mask,
541
+ position_ids,
542
+ head_mask[i],
543
+ )
544
+ else:
545
+ outputs = block(
546
+ hidden_states=hidden_states,
547
+ layer_past=layer_past,
548
+ attention_mask=attention_mask,
549
+ position_ids=position_ids,
550
+ head_mask=head_mask[i],
551
+ use_cache=use_cache,
552
+ output_attentions=output_attentions,
553
+ )
554
+
555
+ hidden_states = outputs[0]
556
+ if use_cache is True:
557
+ presents = presents + (outputs[1],)
558
+
559
+ if output_attentions:
560
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
561
+
562
+ hidden_states = self.ln_f(hidden_states)
563
+
564
+ hidden_states = hidden_states.view(output_shape)
565
+ # Add last hidden state
566
+ if output_hidden_states:
567
+ all_hidden_states = all_hidden_states + (hidden_states,)
568
+
569
+ if not return_dict:
570
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
571
+
572
+ return BaseModelOutputWithPast(
573
+ last_hidden_state=hidden_states,
574
+ past_key_values=presents,
575
+ hidden_states=all_hidden_states,
576
+ attentions=all_self_attentions,
577
+ )
578
+
579
+
580
+ @add_start_docstrings(
581
+ """
582
+ The Moss Model transformer with a language modeling head on top.
583
+ """,
584
+ MOSS_START_DOCSTRING,
585
+ )
586
+ class MossForCausalLM(MossPreTrainedModel):
587
+ _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.causal_mask"]
588
+
589
+ def __init__(self, config):
590
+ super().__init__(config)
591
+ if not hasattr(config, 'wbits'):
592
+ config.wbits = 32
593
+ config.groupsize = 128
594
+
595
+ if config.wbits not in [4, 8, 32]:
596
+ logger.warning(f'Specify `wbits` with 4, 8 or 32 to load the model. ')
597
+ if config.wbits in [4, 8]:
598
+ def noop(*args, **kwargs):
599
+ pass
600
+ torch.nn.init.kaiming_uniform_ = noop
601
+ torch.nn.init.uniform_ = noop
602
+ torch.nn.init.normal_ = noop
603
+
604
+ torch.set_default_dtype(torch.half)
605
+ transformers.modeling_utils._init_weights = False
606
+ torch.set_default_dtype(torch.half)
607
+ self.transformer = MossModel(config)
608
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
609
+ if config.wbits in [4, 8]:
610
+ torch.set_default_dtype(torch.float)
611
+ transformers.modeling_utils._init_weights = True
612
+ self.quantize(config.wbits, config.groupsize)
613
+ # Initialize weights and apply final processing
614
+ self.post_init()
615
+
616
+ def get_output_embeddings(self):
617
+ return self.lm_head
618
+
619
+ def set_output_embeddings(self, new_embeddings):
620
+ self.lm_head = new_embeddings
621
+
622
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
623
+ token_type_ids = kwargs.get("token_type_ids", None)
624
+ # only last token for inputs_ids if past is defined in kwargs
625
+ if past_key_values:
626
+ input_ids = input_ids[:, -1].unsqueeze(-1)
627
+ if token_type_ids is not None:
628
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
629
+
630
+ attention_mask = kwargs.get("attention_mask", None)
631
+ position_ids = kwargs.get("position_ids", None)
632
+
633
+ if attention_mask is not None and position_ids is None:
634
+ # create position_ids on the fly for batch generation
635
+ position_ids = attention_mask.long().cumsum(-1) - 1
636
+ position_ids.masked_fill_(attention_mask == 0, 1)
637
+ if past_key_values:
638
+ position_ids = position_ids[:, -1].unsqueeze(-1)
639
+
640
+ return {
641
+ "input_ids": input_ids,
642
+ "past_key_values": past_key_values,
643
+ "use_cache": kwargs.get("use_cache"),
644
+ "position_ids": position_ids,
645
+ "attention_mask": attention_mask,
646
+ "token_type_ids": token_type_ids,
647
+ }
648
+
649
+ @add_start_docstrings_to_model_forward(MOSS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
650
+ @add_code_sample_docstrings(
651
+ checkpoint=_CHECKPOINT_FOR_DOC,
652
+ output_type=CausalLMOutputWithPast,
653
+ config_class=_CONFIG_FOR_DOC,
654
+ )
655
+ def forward(
656
+ self,
657
+ input_ids: Optional[torch.LongTensor] = None,
658
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
659
+ attention_mask: Optional[torch.FloatTensor] = None,
660
+ token_type_ids: Optional[torch.LongTensor] = None,
661
+ position_ids: Optional[torch.LongTensor] = None,
662
+ head_mask: Optional[torch.FloatTensor] = None,
663
+ inputs_embeds: Optional[torch.FloatTensor] = None,
664
+ labels: Optional[torch.LongTensor] = None,
665
+ use_cache: Optional[bool] = None,
666
+ output_attentions: Optional[bool] = None,
667
+ output_hidden_states: Optional[bool] = None,
668
+ return_dict: Optional[bool] = None,
669
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
670
+ r"""
671
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
672
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
673
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
674
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
675
+ """
676
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
677
+
678
+ transformer_outputs = self.transformer(
679
+ input_ids,
680
+ past_key_values=past_key_values,
681
+ attention_mask=attention_mask,
682
+ token_type_ids=token_type_ids,
683
+ position_ids=position_ids,
684
+ head_mask=head_mask,
685
+ inputs_embeds=inputs_embeds,
686
+ use_cache=use_cache,
687
+ output_attentions=output_attentions,
688
+ output_hidden_states=output_hidden_states,
689
+ return_dict=return_dict,
690
+ )
691
+ hidden_states = transformer_outputs[0]
692
+
693
+ # make sure sampling in fp16 works correctly and
694
+ # compute loss in fp32 to match with mesh-tf version
695
+ # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
696
+ lm_logits = self.lm_head(hidden_states).to(torch.float32)
697
+
698
+ loss = None
699
+ if labels is not None:
700
+ # Shift so that tokens < n predict n
701
+ shift_logits = lm_logits[..., :-1, :].contiguous()
702
+ shift_labels = labels[..., 1:].contiguous()
703
+ # Flatten the tokens
704
+ loss_fct = CrossEntropyLoss()
705
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
706
+
707
+ loss = loss.to(hidden_states.dtype)
708
+
709
+ if not return_dict:
710
+ output = (lm_logits,) + transformer_outputs[1:]
711
+ return ((loss,) + output) if loss is not None else output
712
+
713
+ return CausalLMOutputWithPast(
714
+ loss=loss,
715
+ logits=lm_logits,
716
+ past_key_values=transformer_outputs.past_key_values,
717
+ hidden_states=transformer_outputs.hidden_states,
718
+ attentions=transformer_outputs.attentions,
719
+ )
720
+
721
+ @staticmethod
722
+ def _reorder_cache(
723
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
724
+ ) -> Tuple[Tuple[torch.Tensor]]:
725
+ """
726
+ This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
727
+ [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
728
+ beam_idx at every generation step.
729
+ """
730
+ return tuple(
731
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
732
+ for layer_past in past_key_values
733
+ )
734
+
735
+ def quantize(self, wbits, groupsize):
736
+ from .quantization import quantize_with_gptq
737
+ return quantize_with_gptq(self, wbits, groupsize)
738
+
models/quantization.py ADDED
@@ -0,0 +1,397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ from torch.cuda.amp import custom_bwd, custom_fwd
5
+ import math
6
+
7
+
8
+ def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''):
9
+ if type(module) in layers:
10
+ return {name: module}
11
+ res = {}
12
+ for name1, child in module.named_children():
13
+ res.update(find_layers(
14
+ child, layers=layers, name=name + '.' + name1 if name != '' else name1
15
+ ))
16
+ return res
17
+
18
+
19
+ try:
20
+ import triton
21
+ import triton.language as tl
22
+ from .custom_autotune import *
23
+ except:
24
+ print('triton not installed. Run `pip install triton` to load quantized version of MOSS.')
25
+
26
+ # code based https://github.com/fpgaminer/GPTQ-triton
27
+ @autotune(
28
+ configs=[
29
+ triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
30
+ num_stages=4, num_warps=4),
31
+ triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
32
+ num_stages=4, num_warps=4),
33
+ triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
34
+ num_stages=4, num_warps=4),
35
+ triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
36
+ num_stages=4, num_warps=4),
37
+ triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
38
+ num_stages=4, num_warps=4),
39
+ triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
40
+ num_stages=4, num_warps=4),
41
+ # These provided a benefit on a 3090
42
+ triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
43
+ num_warps=4),
44
+ triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
45
+ num_warps=4),
46
+ triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
47
+ num_warps=4),
48
+ triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4,
49
+ num_warps=4),
50
+ triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4,
51
+ num_warps=4),
52
+ triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4,
53
+ num_warps=4),
54
+ triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8},
55
+ num_stages=4, num_warps=4),
56
+ ],
57
+ key=['M', 'N'],
58
+ nearest_power_of_two=True,
59
+ )
60
+ @triton.jit
61
+ def matmul_248_kernel(a_ptr, b_ptr, c_ptr,
62
+ scales_ptr, zeros_ptr, g_ptr,
63
+ M, N, K, bits, maxq,
64
+ stride_am, stride_ak,
65
+ stride_bk, stride_bn,
66
+ stride_cm, stride_cn,
67
+ stride_scales, stride_zeros,
68
+ BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
69
+ GROUP_SIZE_M: tl.constexpr):
70
+ """
71
+ Compute the matrix multiplication C = A x B.
72
+ A is of shape (M, K) float16
73
+ B is of shape (K//8, N) int32
74
+ C is of shape (M, N) float16
75
+ scales is of shape (G, N) float16
76
+ zeros is of shape (G, N) float16
77
+ g_ptr is of shape (K) int32
78
+ """
79
+ infearure_per_bits = 32 // bits
80
+
81
+ pid = tl.program_id(axis=0)
82
+ num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
83
+ num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
84
+ num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
85
+ num_pid_in_group = GROUP_SIZE_M * num_pid_n
86
+ group_id = pid // num_pid_in_group
87
+ first_pid_m = group_id * GROUP_SIZE_M
88
+ group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
89
+ pid_m = first_pid_m + (pid % group_size_m)
90
+ pid_n = (pid % num_pid_in_group) // group_size_m
91
+
92
+ offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
93
+ offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
94
+ offs_k = tl.arange(0, BLOCK_SIZE_K)
95
+ a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
96
+ a_mask = (offs_am[:, None] < M)
97
+ # b_ptrs is set up such that it repeats elements along the K axis 8 times
98
+ b_ptrs = b_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None,
99
+ :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
100
+ g_ptrs = g_ptr + offs_k
101
+ # shifter is used to extract the N bits of each element in the 32-bit word from B
102
+ scales_ptrs = scales_ptr + offs_bn[None, :]
103
+ zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits)
104
+
105
+ shifter = (offs_k % infearure_per_bits) * bits
106
+ zeros_shifter = (offs_bn % infearure_per_bits) * bits
107
+ accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
108
+
109
+ for k in range(0, num_pid_k):
110
+ g_idx = tl.load(g_ptrs)
111
+
112
+ # Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
113
+ scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
114
+ zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
115
+
116
+ zeros = (zeros >> zeros_shifter[None, :]) & maxq
117
+ zeros = (zeros + 1)
118
+
119
+ a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
120
+ b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
121
+
122
+ # Now we need to unpack b (which is N-bit values) into 32-bit values
123
+ b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
124
+ b = (b - zeros) * scales # Scale and shift
125
+
126
+ accumulator += tl.dot(a, b)
127
+ a_ptrs += BLOCK_SIZE_K
128
+ b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
129
+ g_ptrs += BLOCK_SIZE_K
130
+
131
+ c = accumulator.to(tl.float16)
132
+ c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
133
+ c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
134
+ tl.store(c_ptrs, accumulator, mask=c_mask)
135
+
136
+
137
+ # code based https://github.com/fpgaminer/GPTQ-triton
138
+ @autotune(
139
+ configs=[
140
+ triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8},
141
+ num_stages=4, num_warps=4),
142
+ triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8},
143
+ num_stages=4, num_warps=4),
144
+ triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8},
145
+ num_stages=4, num_warps=4),
146
+ triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8},
147
+ num_stages=4, num_warps=4),
148
+ triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8},
149
+ num_stages=4, num_warps=4),
150
+ triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 32, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8},
151
+ num_stages=4, num_warps=4),
152
+ # These provided a benefit on a 3090
153
+ triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
154
+ num_warps=4),
155
+ triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
156
+ num_warps=4),
157
+ triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 32, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
158
+ num_warps=4),
159
+ triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 64, 'GROUP_SIZE_M': 8}, num_stages=4,
160
+ num_warps=4),
161
+ triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 64, 'GROUP_SIZE_M': 8}, num_stages=4,
162
+ num_warps=4),
163
+ triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 32, 'BLOCK_SIZE_N': 64, 'GROUP_SIZE_M': 8}, num_stages=4,
164
+ num_warps=4),
165
+ triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 128, 'GROUP_SIZE_M': 8},
166
+ num_stages=4, num_warps=4),
167
+ ],
168
+ key=['M', 'K'],
169
+ nearest_power_of_two=True,
170
+ )
171
+ @triton.jit
172
+ def trans_matmul_248_kernel(a_ptr, b_ptr, c_ptr,
173
+ scales_ptr, zeros_ptr, g_ptr,
174
+ M, N, K, bits, maxq,
175
+ stride_am, stride_ak,
176
+ stride_bk, stride_bn,
177
+ stride_cm, stride_cn,
178
+ stride_scales, stride_zeros,
179
+ BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
180
+ GROUP_SIZE_M: tl.constexpr):
181
+ """
182
+ Compute the matrix multiplication C = A x B.
183
+ A is of shape (M, N) float16
184
+ B is of shape (K//8, N) int32
185
+ C is of shape (M, K) float16
186
+ scales is of shape (G, N) float16
187
+ zeros is of shape (G, N) float16
188
+ g_ptr is of shape (K) int32
189
+ """
190
+ infearure_per_bits = 32 // bits
191
+
192
+ pid = tl.program_id(axis=0)
193
+ num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
194
+ num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
195
+ num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
196
+ num_pid_in_group = GROUP_SIZE_M * num_pid_k
197
+ group_id = pid // num_pid_in_group
198
+ first_pid_m = group_id * GROUP_SIZE_M
199
+ group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
200
+ pid_m = first_pid_m + (pid % group_size_m)
201
+ pid_k = (pid % num_pid_in_group) // group_size_m
202
+
203
+ offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
204
+ offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
205
+ offs_n = tl.arange(0, BLOCK_SIZE_N)
206
+ a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
207
+ a_mask = (offs_am[:, None] < M)
208
+ # b_ptrs is set up such that it repeats elements along the K axis 8 times
209
+ b_ptrs = b_ptr + ((offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None,
210
+ :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
211
+ g_ptrs = g_ptr + offs_bk
212
+ g_idx = tl.load(g_ptrs)
213
+
214
+ # shifter is used to extract the N bits of each element in the 32-bit word from B
215
+ scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales
216
+ zeros_ptrs = zeros_ptr + (offs_n[None, :] // infearure_per_bits) + g_idx[:, None] * stride_zeros
217
+
218
+ shifter = (offs_bk % infearure_per_bits) * bits
219
+ zeros_shifter = (offs_n % infearure_per_bits) * bits
220
+ accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32)
221
+
222
+ for k in range(0, num_pid_n):
223
+ # Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
224
+ scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
225
+ zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
226
+
227
+ zeros = (zeros >> zeros_shifter[None, :]) & maxq
228
+ zeros = (zeros + 1)
229
+
230
+ a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
231
+ b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
232
+
233
+ # Now we need to unpack b (which is N-bit values) into 32-bit values
234
+ b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
235
+ b = (b - zeros) * scales # Scale and shift
236
+ b = tl.trans(b)
237
+
238
+ accumulator += tl.dot(a, b)
239
+ a_ptrs += BLOCK_SIZE_N
240
+ b_ptrs += BLOCK_SIZE_N
241
+ scales_ptrs += BLOCK_SIZE_N
242
+ zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits)
243
+
244
+ c = accumulator.to(tl.float16)
245
+ c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :]
246
+ c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K)
247
+ tl.store(c_ptrs, accumulator, mask=c_mask)
248
+
249
+
250
+ def matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq):
251
+ output = torch.empty((input.shape[0], qweight.shape[1]), device='cuda', dtype=torch.float16)
252
+ grid = lambda META: (
253
+ triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']),)
254
+ matmul_248_kernel[grid](input, qweight, output,
255
+ scales, qzeros, g_idx,
256
+ input.shape[0], qweight.shape[1], input.shape[1], bits, maxq,
257
+ input.stride(0), input.stride(1),
258
+ qweight.stride(0), qweight.stride(1),
259
+ output.stride(0), output.stride(1),
260
+ scales.stride(0), qzeros.stride(0))
261
+ return output
262
+
263
+
264
+ def transpose_matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq):
265
+ output_dim = (qweight.shape[0] * 32) // bits
266
+ output = torch.empty((input.shape[0], output_dim), device='cuda', dtype=torch.float16)
267
+ grid = lambda META: (
268
+ triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(output_dim, META['BLOCK_SIZE_K']),)
269
+ transpose_matmul_248_kernel[grid](input, qweight, output,
270
+ scales, qzeros, g_idx,
271
+ input.shape[0], qweight.shape[1], output_dim, bits, maxq,
272
+ input.stride(0), input.stride(1),
273
+ qweight.stride(0), qweight.stride(1),
274
+ output.stride(0), output.stride(1),
275
+ scales.stride(0), qzeros.stride(0))
276
+ return output
277
+
278
+
279
+ class QuantLinearFunction(torch.autograd.Function):
280
+ @staticmethod
281
+ @custom_fwd(cast_inputs=torch.float16)
282
+ def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq):
283
+ output = matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq)
284
+ ctx.save_for_backward(qweight, scales, qzeros, g_idx)
285
+ ctx.bits, ctx.maxq = bits, maxq
286
+ return output
287
+
288
+ @staticmethod
289
+ @custom_bwd
290
+ def backward(ctx, grad_output):
291
+ qweight, scales, qzeros, g_idx = ctx.saved_tensors
292
+ bits, maxq = ctx.bits, ctx.maxq
293
+ grad_input = None
294
+
295
+ if ctx.needs_input_grad[0]:
296
+ grad_input = transpose_matmul248(grad_output, qweight, scales, qzeros, g_idx, bits, maxq)
297
+ return grad_input, None, None, None, None, None, None
298
+
299
+ class QuantLinear(nn.Module):
300
+ def __init__(self, bits, groupsize, infeatures, outfeatures, bias):
301
+ super().__init__()
302
+ if bits not in [2, 4, 8]:
303
+ raise NotImplementedError("Only 2,4,8 bits are supported.")
304
+ self.infeatures = infeatures
305
+ self.outfeatures = outfeatures
306
+ self.bits = bits
307
+ self.maxq = 2 ** self.bits - 1
308
+ self.groupsize = groupsize if groupsize != -1 else infeatures
309
+
310
+ self.register_buffer('qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32))
311
+ self.register_buffer('qzeros', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits), dtype=torch.int32))
312
+ self.register_buffer('scales', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16))
313
+ self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype=torch.int32))
314
+ if bias:
315
+ self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
316
+ else:
317
+ self.bias = None
318
+
319
+ def pack(self, linear, scales, zeros, g_idx=None):
320
+ self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
321
+
322
+ scales = scales.t().contiguous()
323
+ zeros = zeros.t().contiguous()
324
+ scale_zeros = zeros * scales
325
+ self.scales = scales.clone().half()
326
+ if linear.bias is not None:
327
+ self.bias = linear.bias.clone().half()
328
+
329
+ intweight = []
330
+ for idx in range(self.infeatures):
331
+ intweight.append(torch.round(
332
+ (linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]).to(
333
+ torch.int)[:, None])
334
+ intweight = torch.cat(intweight, dim=1)
335
+ intweight = intweight.t().contiguous()
336
+ intweight = intweight.numpy().astype(np.uint32)
337
+ qweight = np.zeros((intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32)
338
+ i = 0
339
+ row = 0
340
+ while row < qweight.shape[0]:
341
+ if self.bits in [2, 4, 8]:
342
+ for j in range(i, i + (32 // self.bits)):
343
+ qweight[row] |= intweight[j] << (self.bits * (j - i))
344
+ i += 32 // self.bits
345
+ row += 1
346
+ else:
347
+ raise NotImplementedError("Only 2,4,8 bits are supported.")
348
+
349
+ qweight = qweight.astype(np.int32)
350
+ self.qweight = torch.from_numpy(qweight)
351
+
352
+ zeros -= 1
353
+ zeros = zeros.numpy().astype(np.uint32)
354
+ qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32)
355
+ i = 0
356
+ col = 0
357
+ while col < qzeros.shape[1]:
358
+ if self.bits in [2, 4, 8]:
359
+ for j in range(i, i + (32 // self.bits)):
360
+ qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
361
+ i += 32 // self.bits
362
+ col += 1
363
+ else:
364
+ raise NotImplementedError("Only 2,4,8 bits are supported.")
365
+
366
+ qzeros = qzeros.astype(np.int32)
367
+ self.qzeros = torch.from_numpy(qzeros)
368
+
369
+ def forward(self, x):
370
+ out_shape = x.shape[:-1] + (self.outfeatures,)
371
+ out = QuantLinearFunction.apply(x.reshape(-1, x.shape[-1]), self.qweight, self.scales,
372
+ self.qzeros, self.g_idx, self.bits, self.maxq)
373
+ out = out + self.bias if self.bias is not None else out
374
+ return out.reshape(out_shape)
375
+
376
+ def make_quant(module, names, bits, groupsize, name=''):
377
+ if isinstance(module, QuantLinear):
378
+ return
379
+ for attr in dir(module):
380
+ tmp = getattr(module, attr)
381
+ name1 = name + '.' + attr if name != '' else attr
382
+ if name1 in names:
383
+ delattr(module, attr)
384
+ setattr(module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features, tmp.bias is not None))
385
+ for name1, child in module.named_children():
386
+ make_quant(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1)
387
+
388
+
389
+ def quantize_with_gptq(model, wbits, groupsize):
390
+ model = model.eval()
391
+ layers = find_layers(model)
392
+ for name in ['lm_head']:
393
+ if name in layers:
394
+ del layers[name]
395
+ make_quant(model, layers, wbits, groupsize)
396
+ # model.load_state_dict(torch.load(checkpoint))
397
+ return model
models/tokenization_moss.py ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tokenization classes for Moss"""
2
+
3
+ import json
4
+ import os
5
+ import numpy as np
6
+ import regex as re
7
+
8
+ from functools import lru_cache
9
+ from typing import TYPE_CHECKING, List, Optional, Tuple, Union
10
+
11
+ from transformers.utils import is_tf_available, is_torch_available, logging
12
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
13
+
14
+
15
+ if TYPE_CHECKING:
16
+ if is_torch_available():
17
+ import torch
18
+ if is_tf_available():
19
+ import tensorflow as tf
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ VOCAB_FILES_NAMES = {
25
+ "vocab_file": "vocab.json",
26
+ "merges_file": "merges.txt",
27
+ }
28
+
29
+ PRETRAINED_VOCAB_FILES_MAP = {
30
+ "vocab_file": {
31
+ "fnlp/moss-moon-003-base": "https://huggingface.co/fnlp/moss-moon-003-base/resolve/main/vocab.json",
32
+ "fnlp/moss-moon-003-sft": "https://huggingface.co/fnlp/moss-moon-003-sft/resolve/main/vocab.json",
33
+ "fnlp/moss-moon-003-sft-plugin": "https://huggingface.co/fnlp/moss-moon-003-sft-plugin/resolve/main/vocab.json",
34
+ "fnlp/moss-moon-003-sft-int8": "https://huggingface.co/fnlp/moss-moon-003-sft-int8/resolve/main/vocab.json",
35
+ "fnlp/moss-moon-003-sft-plugin-int8": "https://huggingface.co/fnlp/moss-moon-003-sft-plugin-int8/resolve/main/vocab.json",
36
+ "fnlp/moss-moon-003-sft-int4": "https://huggingface.co/fnlp/moss-moon-003-sft-int4/resolve/main/vocab.json",
37
+ "fnlp/moss-moon-003-sft-plugin-int4": "https://huggingface.co/fnlp/moss-moon-003-sft-plugin-int4/resolve/main/vocab.json",
38
+ },
39
+ "merges_file": {
40
+ "fnlp/moss-moon-003-base": "https://huggingface.co/fnlp/moss-moon-003-base/resolve/main/merges.txt",
41
+ "fnlp/moss-moon-003-sft": "https://huggingface.co/fnlp/moss-moon-003-sft/resolve/main/merges.txt",
42
+ "fnlp/moss-moon-003-sft-plugin": "https://huggingface.co/fnlp/moss-moon-003-sft-plugin/resolve/main/merges.txt",
43
+ "fnlp/moss-moon-003-sft-int8": "https://huggingface.co/fnlp/moss-moon-003-sft-int8/resolve/main/merges.txt",
44
+ "fnlp/moss-moon-003-sft-plugin-int8": "https://huggingface.co/fnlp/moss-moon-003-sft-plugin-int8/resolve/main/merges.txt",
45
+ "fnlp/moss-moon-003-sft-int4": "https://huggingface.co/fnlp/moss-moon-003-sft-int4/resolve/main/merges.txt",
46
+ "fnlp/moss-moon-003-sft-plugin-int4": "https://huggingface.co/fnlp/moss-moon-003-sft-plugin-int4/resolve/main/merges.txt",
47
+ },
48
+ }
49
+
50
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
51
+ "fnlp/moss-moon-003-base": 2048,
52
+ "fnlp/moss-moon-003-sft": 2048,
53
+ "fnlp/moss-moon-003-sft-plugin": 2048,
54
+ "fnlp/moss-moon-003-sft-int8": 2048,
55
+ "fnlp/moss-moon-003-sft-plugin-int8": 2048,
56
+ "fnlp/moss-moon-003-sft-int4": 2048,
57
+ "fnlp/moss-moon-003-sft-plugin-int4": 2048,
58
+ }
59
+
60
+
61
+ @lru_cache()
62
+ def bytes_to_unicode():
63
+ """
64
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
65
+ characters the bpe code barfs on.
66
+
67
+ The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
68
+ if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
69
+ decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
70
+ tables between utf-8 bytes and unicode strings.
71
+ """
72
+ bs = (
73
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
74
+ )
75
+ cs = bs[:]
76
+ n = 0
77
+ for b in range(2**8):
78
+ if b not in bs:
79
+ bs.append(b)
80
+ cs.append(2**8 + n)
81
+ n += 1
82
+ cs = [chr(n) for n in cs]
83
+ return dict(zip(bs, cs))
84
+
85
+
86
+ def get_pairs(word):
87
+ """
88
+ Return set of symbol pairs in a word.
89
+
90
+ Word is represented as tuple of symbols (symbols being variable-length strings).
91
+ """
92
+ pairs = set()
93
+ prev_char = word[0]
94
+ for char in word[1:]:
95
+ pairs.add((prev_char, char))
96
+ prev_char = char
97
+ return pairs
98
+
99
+
100
+ class MossTokenizer(PreTrainedTokenizer):
101
+ """
102
+ Construct a Moss tokenizer. Based on byte-level Byte-Pair-Encoding.
103
+
104
+ This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
105
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
106
+
107
+ You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
108
+ call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
109
+
110
+ <Tip>
111
+
112
+ When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
113
+
114
+ </Tip>
115
+
116
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
117
+ this superclass for more information regarding those methods.
118
+
119
+ Args:
120
+ vocab_file (`str`):
121
+ Path to the vocabulary file.
122
+ merges_file (`str`):
123
+ Path to the merges file.
124
+ errors (`str`, *optional*, defaults to `"replace"`):
125
+ Paradigm to follow when decoding bytes to UTF-8. See
126
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
127
+ unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
128
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
129
+ token instead.
130
+ bos_token (`str`, *optional*, defaults to `<|endoftext|>`):
131
+ The beginning of sequence token.
132
+ eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
133
+ The end of sequence token.
134
+ add_prefix_space (`bool`, *optional*, defaults to `False`):
135
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
136
+ other word. (Moss tokenizer detect beginning of words by the preceding space).
137
+ """
138
+
139
+ vocab_files_names = VOCAB_FILES_NAMES
140
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
141
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
142
+ model_input_names = ["input_ids", "attention_mask"]
143
+
144
+ def __init__(
145
+ self,
146
+ vocab_file,
147
+ merges_file,
148
+ errors="replace",
149
+ unk_token="<|endoftext|>",
150
+ bos_token="<|endoftext|>",
151
+ eos_token="<eom>",
152
+ pad_token=None,
153
+ add_prefix_space=False,
154
+ add_bos_token=False,
155
+ **kwargs,
156
+ ):
157
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
158
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
159
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
160
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
161
+ super().__init__(
162
+ errors=errors,
163
+ unk_token=unk_token,
164
+ bos_token=bos_token,
165
+ eos_token=eos_token,
166
+ pad_token=pad_token,
167
+ add_prefix_space=add_prefix_space,
168
+ add_bos_token=add_bos_token,
169
+ **kwargs,
170
+ )
171
+ self.add_bos_token = add_bos_token
172
+
173
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
174
+ self.encoder = json.load(vocab_handle)
175
+ self.decoder = {v: k for k, v in self.encoder.items()}
176
+ self.errors = errors # how to handle errors in decoding
177
+ self.byte_encoder = bytes_to_unicode()
178
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
179
+ with open(merges_file, encoding="utf-8") as merges_handle:
180
+ bpe_merges = merges_handle.read().split("\n")[1:-1]
181
+ bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
182
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
183
+ self.cache = {}
184
+ self.add_prefix_space = add_prefix_space
185
+
186
+ # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
187
+ self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
188
+
189
+ @property
190
+ def vocab_size(self):
191
+ return len(self.encoder)
192
+
193
+ def get_vocab(self):
194
+ return dict(self.encoder, **self.added_tokens_encoder)
195
+
196
+ def bpe(self, token):
197
+ if token in self.cache:
198
+ return self.cache[token]
199
+ word = tuple(token)
200
+ pairs = get_pairs(word)
201
+
202
+ if not pairs:
203
+ return token
204
+
205
+ while True:
206
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
207
+ if bigram not in self.bpe_ranks:
208
+ break
209
+ first, second = bigram
210
+ new_word = []
211
+ i = 0
212
+ while i < len(word):
213
+ try:
214
+ j = word.index(first, i)
215
+ except ValueError:
216
+ new_word.extend(word[i:])
217
+ break
218
+ else:
219
+ new_word.extend(word[i:j])
220
+ i = j
221
+
222
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
223
+ new_word.append(first + second)
224
+ i += 2
225
+ else:
226
+ new_word.append(word[i])
227
+ i += 1
228
+ new_word = tuple(new_word)
229
+ word = new_word
230
+ if len(word) == 1:
231
+ break
232
+ else:
233
+ pairs = get_pairs(word)
234
+ word = " ".join(word)
235
+ self.cache[token] = word
236
+ return word
237
+
238
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
239
+ if self.add_bos_token:
240
+ bos_token_ids = [self.bos_token_id]
241
+ else:
242
+ bos_token_ids = []
243
+
244
+ output = bos_token_ids + token_ids_0
245
+
246
+ if token_ids_1 is None:
247
+ return output
248
+
249
+ return output + bos_token_ids + token_ids_1
250
+
251
+ def _tokenize(self, text):
252
+ """Tokenize a string."""
253
+ bpe_tokens = []
254
+ for token in re.findall(self.pat, text):
255
+ token = "".join(
256
+ self.byte_encoder[b] for b in token.encode("utf-8")
257
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
258
+ bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
259
+ return bpe_tokens
260
+
261
+ def _convert_token_to_id(self, token):
262
+ """Converts a token (str) in an id using the vocab."""
263
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
264
+
265
+ def _convert_id_to_token(self, index):
266
+ """Converts an index (integer) in a token (str) using the vocab."""
267
+ return self.decoder.get(index)
268
+
269
+ def convert_tokens_to_string(self, tokens):
270
+ """Converts a sequence of tokens (string) in a single string."""
271
+ text = "".join(tokens)
272
+ text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
273
+ return text
274
+
275
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
276
+ if not os.path.isdir(save_directory):
277
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
278
+ return
279
+ vocab_file = os.path.join(
280
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
281
+ )
282
+ merge_file = os.path.join(
283
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
284
+ )
285
+
286
+ with open(vocab_file, "w", encoding="utf-8") as f:
287
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
288
+
289
+ index = 0
290
+ with open(merge_file, "w", encoding="utf-8") as writer:
291
+ writer.write("#version: 0.2\n")
292
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
293
+ if index != token_index:
294
+ logger.warning(
295
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
296
+ " Please check that the tokenizer is not corrupted!"
297
+ )
298
+ index = token_index
299
+ writer.write(" ".join(bpe_tokens) + "\n")
300
+ index += 1
301
+
302
+ return vocab_file, merge_file
303
+
304
+ def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
305
+ add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
306
+ if is_split_into_words or add_prefix_space:
307
+ text = " " + text
308
+ return (text, kwargs)
309
+
310
+ def decode(
311
+ self,
312
+ token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
313
+ skip_special_tokens: bool = False,
314
+ clean_up_tokenization_spaces: bool = None,
315
+ truncate_before_pattern: Optional[List[str]] = None,
316
+ **kwargs,
317
+ ) -> str:
318
+ """
319
+ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
320
+ tokens and clean up tokenization spaces.
321
+
322
+ Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
323
+
324
+ Args:
325
+ token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
326
+ List of tokenized input ids. Can be obtained using the `__call__` method.
327
+ skip_special_tokens (`bool`, *optional*, defaults to `False`):
328
+ Whether or not to remove special tokens in the decoding.
329
+ clean_up_tokenization_spaces (`bool`, *optional*):
330
+ Whether or not to clean up the tokenization spaces. If `None`, will default to
331
+ `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`).
332
+ truncate_before_pattern (`List[str]`, *optional*, defaults to `None`):
333
+ A list of regular expression strings that will be used to truncate the returned string. This can be
334
+ used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning
335
+ of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`.
336
+ kwargs (additional keyword arguments, *optional*):
337
+ Will be passed to the underlying model specific decode method.
338
+
339
+ Returns:
340
+ `str`: The decoded sentence.
341
+ """
342
+ decoded_text = super()._decode(
343
+ token_ids=token_ids,
344
+ skip_special_tokens=skip_special_tokens,
345
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
346
+ **kwargs,
347
+ )
348
+
349
+ if truncate_before_pattern is not None and len(truncate_before_pattern) > 0:
350
+ decoded_text = self.truncate(decoded_text, truncate_before_pattern)
351
+
352
+ return decoded_text
353
+
354
+ def truncate(self, completion, truncate_before_pattern):
355
+ def find_re(string, pattern, start_pos):
356
+ m = pattern.search(string, start_pos)
357
+ return m.start() if m else -1
358
+
359
+ terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern]
360
+
361
+ prints = list(re.finditer("^print", completion, re.MULTILINE))
362
+
363
+ if len(prints) > 1:
364
+ completion = completion[: prints[1].start()]
365
+
366
+ defs = list(re.finditer("^def", completion, re.MULTILINE))
367
+
368
+ if len(defs) > 1:
369
+ completion = completion[: defs[1].start()]
370
+
371
+ start_pos = 0
372
+
373
+ terminals_pos = [
374
+ pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1
375
+ ]
376
+
377
+ if len(terminals_pos) > 0:
378
+ return completion[: min(terminals_pos)]
379
+ else:
380
+ return completion