xiaoming32236046 commited on
Commit
1bb6654
·
verified ·
1 Parent(s): ca53920

Upload 24 files

Browse files
app.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import cv2
3
+ import tempfile
4
+ from ultralytics import YOLOv10
5
+
6
+
7
+ def yolov10_inference(image, video, model_id, image_size, conf_threshold):
8
+ #model = YOLOv10.from_pretrained(f'jameslahm/{model_id}')
9
+ model = YOLOv10("/ddn/imu_tch1/project/yolov10/yolov10-1.0/runs/detect/train9/weights/best.pt")
10
+ if image:
11
+ results = model.predict(source=image, imgsz=image_size, conf=conf_threshold)
12
+ annotated_image = results[0].plot()
13
+ return annotated_image[:, :, ::-1], None
14
+ else:
15
+ video_path = tempfile.mktemp(suffix=".webm")
16
+ with open(video_path, "wb") as f:
17
+ with open(video, "rb") as g:
18
+ f.write(g.read())
19
+
20
+ cap = cv2.VideoCapture(video_path)
21
+ fps = cap.get(cv2.CAP_PROP_FPS)
22
+ frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
23
+ frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
24
+
25
+ output_video_path = tempfile.mktemp(suffix=".webm")
26
+ out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'vp80'), fps, (frame_width, frame_height))
27
+
28
+ while cap.isOpened():
29
+ ret, frame = cap.read()
30
+ if not ret:
31
+ break
32
+
33
+ results = model.predict(source=frame, imgsz=image_size, conf=conf_threshold)
34
+ annotated_frame = results[0].plot()
35
+ out.write(annotated_frame)
36
+
37
+ cap.release()
38
+ out.release()
39
+
40
+ return None, output_video_path
41
+
42
+
43
+ def yolov10_inference_for_examples(image, model_path, image_size, conf_threshold):
44
+ annotated_image, _ = yolov10_inference(image, None, model_path, image_size, conf_threshold)
45
+ return annotated_image
46
+
47
+
48
+ def app():
49
+ with gr.Blocks():
50
+ with gr.Row():
51
+ with gr.Column():
52
+ image = gr.Image(type="pil", label="Image", visible=True)
53
+ video = gr.Video(label="Video", visible=False)
54
+ input_type = gr.Radio(
55
+ choices=["Image", "Video"],
56
+ value="Image",
57
+ label="Input Type",
58
+ )
59
+ model_id = gr.Dropdown(
60
+ label="Model",
61
+ choices=[
62
+ "yolov10n",
63
+ "yolov10s",
64
+ "yolov10m",
65
+ "yolov10b",
66
+ "yolov10l",
67
+ "yolov10x",
68
+ ],
69
+ value="yolov10m",
70
+ )
71
+ image_size = gr.Slider(
72
+ label="Image Size",
73
+ minimum=320,
74
+ maximum=1280,
75
+ step=32,
76
+ value=640,
77
+ )
78
+ conf_threshold = gr.Slider(
79
+ label="Confidence Threshold",
80
+ minimum=0.0,
81
+ maximum=1.0,
82
+ step=0.05,
83
+ value=0.25,
84
+ )
85
+ yolov10_infer = gr.Button(value="Detect Objects")
86
+
87
+ with gr.Column():
88
+ output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
89
+ output_video = gr.Video(label="Annotated Video", visible=False)
90
+
91
+ def update_visibility(input_type):
92
+ image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
93
+ video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
94
+ output_image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
95
+ output_video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
96
+
97
+ return image, video, output_image, output_video
98
+
99
+ input_type.change(
100
+ fn=update_visibility,
101
+ inputs=[input_type],
102
+ outputs=[image, video, output_image, output_video],
103
+ )
104
+
105
+ def run_inference(image, video, model_id, image_size, conf_threshold, input_type):
106
+ if input_type == "Image":
107
+ return yolov10_inference(image, None, model_id, image_size, conf_threshold)
108
+ else:
109
+ return yolov10_inference(None, video, model_id, image_size, conf_threshold)
110
+
111
+
112
+ yolov10_infer.click(
113
+ fn=run_inference,
114
+ inputs=[image, video, model_id, image_size, conf_threshold, input_type],
115
+ outputs=[output_image, output_video],
116
+ )
117
+
118
+ gr.Examples(
119
+ examples=[
120
+ [
121
+ "ultralytics/assets/bus.jpg",
122
+ "yolov10s",
123
+ 640,
124
+ 0.25,
125
+ ],
126
+ [
127
+ "ultralytics/assets/zidane.jpg",
128
+ "yolov10s",
129
+ 640,
130
+ 0.25,
131
+ ],
132
+ ],
133
+ fn=yolov10_inference_for_examples,
134
+ inputs=[
135
+ image,
136
+ model_id,
137
+ image_size,
138
+ conf_threshold,
139
+ ],
140
+ outputs=[output_image],
141
+ cache_examples='lazy',
142
+ )
143
+
144
+ gradio_app = gr.Blocks()
145
+ with gradio_app:
146
+ gr.HTML(
147
+ """
148
+ <h1 style='text-align: center'>
149
+ YOLOv10: Real-Time End-to-End Object Detection
150
+ </h1>
151
+ """)
152
+ gr.HTML(
153
+ """
154
+ <h3 style='text-align: center'>
155
+ <a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
156
+ </h3>
157
+ """)
158
+ with gr.Row():
159
+ with gr.Column():
160
+ app()
161
+ if __name__ == '__main__':
162
+ gradio_app.launch()
requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch==2.0.1
2
+ torchvision==0.15.2
3
+ onnx==1.14.0
4
+ onnxruntime==1.15.1
5
+ pycocotools==2.0.7
6
+ PyYAML==6.0.1
7
+ scipy==1.13.0
8
+ onnxsim==0.4.36
9
+ onnxruntime-gpu==1.18.0
10
+ gradio==4.31.5
11
+ opencv-python==4.9.0.80
12
+ psutil==5.9.8
13
+ py-cpuinfo==9.0.0
14
+ huggingface-hub==0.23.2
15
+ safetensors==0.4.3
runs/detect/train/F1_curve.png ADDED
runs/detect/train/PR_curve.png ADDED
runs/detect/train/P_curve.png ADDED
runs/detect/train/R_curve.png ADDED
runs/detect/train/args.yaml ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: detect
2
+ mode: train
3
+ model: yolov10n.yaml
4
+ data: /ddn/imu_tsxm1/xm/GPT4V/lung/lung.yaml
5
+ epochs: 2
6
+ time: null
7
+ patience: 100
8
+ batch: 64
9
+ imgsz: 640
10
+ save: true
11
+ save_period: -1
12
+ val_period: 1
13
+ cache: false
14
+ device: null
15
+ workers: 8
16
+ project: null
17
+ name: train
18
+ exist_ok: false
19
+ pretrained: true
20
+ optimizer: auto
21
+ verbose: true
22
+ seed: 0
23
+ deterministic: true
24
+ single_cls: false
25
+ rect: false
26
+ cos_lr: false
27
+ close_mosaic: 10
28
+ resume: false
29
+ amp: true
30
+ fraction: 1.0
31
+ profile: false
32
+ freeze: null
33
+ multi_scale: false
34
+ overlap_mask: true
35
+ mask_ratio: 4
36
+ dropout: 0.0
37
+ val: true
38
+ split: val
39
+ save_json: false
40
+ save_hybrid: false
41
+ conf: null
42
+ iou: 0.7
43
+ max_det: 300
44
+ half: false
45
+ dnn: false
46
+ plots: true
47
+ source: null
48
+ vid_stride: 1
49
+ stream_buffer: false
50
+ visualize: false
51
+ augment: false
52
+ agnostic_nms: false
53
+ classes: null
54
+ retina_masks: false
55
+ embed: null
56
+ show: false
57
+ save_frames: false
58
+ save_txt: false
59
+ save_conf: false
60
+ save_crop: false
61
+ show_labels: true
62
+ show_conf: true
63
+ show_boxes: true
64
+ line_width: null
65
+ format: torchscript
66
+ keras: false
67
+ optimize: false
68
+ int8: false
69
+ dynamic: false
70
+ simplify: false
71
+ opset: null
72
+ workspace: 4
73
+ nms: false
74
+ lr0: 0.01
75
+ lrf: 0.01
76
+ momentum: 0.937
77
+ weight_decay: 0.0005
78
+ warmup_epochs: 3.0
79
+ warmup_momentum: 0.8
80
+ warmup_bias_lr: 0.1
81
+ box: 7.5
82
+ cls: 0.5
83
+ dfl: 1.5
84
+ pose: 12.0
85
+ kobj: 1.0
86
+ label_smoothing: 0.0
87
+ nbs: 64
88
+ hsv_h: 0.015
89
+ hsv_s: 0.7
90
+ hsv_v: 0.4
91
+ degrees: 0.0
92
+ translate: 0.1
93
+ scale: 0.5
94
+ shear: 0.0
95
+ perspective: 0.0
96
+ flipud: 0.0
97
+ fliplr: 0.5
98
+ bgr: 0.0
99
+ mosaic: 1.0
100
+ mixup: 0.0
101
+ copy_paste: 0.0
102
+ auto_augment: randaugment
103
+ erasing: 0.4
104
+ crop_fraction: 1.0
105
+ cfg: null
106
+ tracker: botsort.yaml
107
+ save_dir: /ddn/imu_tsxm1/xm/yolov10/runs/detect/train
runs/detect/train/confusion_matrix.png ADDED
runs/detect/train/confusion_matrix_normalized.png ADDED
runs/detect/train/labels.jpg ADDED
runs/detect/train/labels_correlogram.jpg ADDED
runs/detect/train/results.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ epoch, train/box_om, train/cls_om, train/dfl_om, train/box_oo, train/cls_oo, train/dfl_oo, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_om, val/cls_om, val/dfl_om, val/box_oo, val/cls_oo, val/dfl_oo, lr/pg0, lr/pg1, lr/pg2
2
+ 1, 3.8105, 7.4064, 3.678, 3.5618, 24.024, 3.7539, 0.59641, 0.00843, 0.007, 0.00266, 2.7984, 6.3662, 3.1238, 2.4414, 15.635, 3.0117, 0.00041369, 0.00041369, 0.00041369
3
+ 2, 2.4872, 3.9917, 2.2762, 2.1875, 7.8443, 2.0726, 0.58834, 0.0806, 0.04886, 0.0197, 2.1791, 3.5221, 2.1289, 1.8437, 6.7368, 1.8786, 0.00041933, 0.00041933, 0.00041933
runs/detect/train/results.png ADDED
runs/detect/train/train_batch0.jpg ADDED
runs/detect/train/train_batch1.jpg ADDED
runs/detect/train/train_batch2.jpg ADDED
runs/detect/train/val_batch0_labels.jpg ADDED
runs/detect/train/val_batch0_pred.jpg ADDED
runs/detect/train/val_batch1_labels.jpg ADDED
runs/detect/train/val_batch1_pred.jpg ADDED
runs/detect/train/val_batch2_labels.jpg ADDED
runs/detect/train/val_batch2_pred.jpg ADDED
runs/detect/train/weights/best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df3622e5cb1340eee66c1411b4661bbf9ab83cbd8cf1b5847b12f28382238dc6
3
+ size 5748665
runs/detect/train/weights/last.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67cc71bb27e03b564382e83179dd00b31a073c3cbc3c6cfcb0cfb652f824019f
3
+ size 5748665