Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import torch | |
from ultralytics.engine.predictor import BasePredictor | |
from ultralytics.engine.results import Results | |
from ultralytics.utils import ops | |
class NASPredictor(BasePredictor): | |
""" | |
Ultralytics YOLO NAS Predictor for object detection. | |
This class extends the `BasePredictor` from Ultralytics engine and is responsible for post-processing the | |
raw predictions generated by the YOLO NAS models. It applies operations like non-maximum suppression and | |
scaling the bounding boxes to fit the original image dimensions. | |
Attributes: | |
args (Namespace): Namespace containing various configurations for post-processing. | |
Example: | |
```python | |
from ultralytics import NAS | |
model = NAS('yolo_nas_s') | |
predictor = model.predictor | |
# Assumes that raw_preds, img, orig_imgs are available | |
results = predictor.postprocess(raw_preds, img, orig_imgs) | |
``` | |
Note: | |
Typically, this class is not instantiated directly. It is used internally within the `NAS` class. | |
""" | |
def postprocess(self, preds_in, img, orig_imgs): | |
"""Postprocess predictions and returns a list of Results objects.""" | |
# Cat boxes and class scores | |
boxes = ops.xyxy2xywh(preds_in[0][0]) | |
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) | |
preds = ops.non_max_suppression( | |
preds, | |
self.args.conf, | |
self.args.iou, | |
agnostic=self.args.agnostic_nms, | |
max_det=self.args.max_det, | |
classes=self.args.classes, | |
) | |
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list | |
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) | |
results = [] | |
for i, pred in enumerate(preds): | |
orig_img = orig_imgs[i] | |
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) | |
img_path = self.batch[0][i] | |
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred)) | |
return results | |