xiaoming32236046's picture
Upload 325 files
53ad959 verified
raw
history blame
2.45 kB
# Ultralytics YOLO πŸš€, AGPL-3.0 license
"""
Ultralytics modules.
Example:
Visualize a module with Netron.
```python
from ultralytics.nn.modules import *
import torch
import os
x = torch.ones(1, 128, 40, 40)
m = Conv(128, 128)
f = f'{m._get_name()}.onnx'
torch.onnx.export(m, x, f)
os.system(f'onnxsim {f} {f} && open {f}')
```
"""
from .block import (
C1,
C2,
C3,
C3TR,
DFL,
SPP,
SPPF,
Bottleneck,
BottleneckCSP,
C2f,
C2fAttn,
ImagePoolingAttn,
C3Ghost,
C3x,
GhostBottleneck,
HGBlock,
HGStem,
Proto,
RepC3,
ResNetLayer,
ContrastiveHead,
BNContrastiveHead,
RepNCSPELAN4,
ADown,
SPPELAN,
CBFuse,
CBLinear,
Silence,
PSA,
C2fCIB,
SCDown,
RepVGGDW
)
from .conv import (
CBAM,
ChannelAttention,
Concat,
Conv,
Conv2,
ConvTranspose,
DWConv,
DWConvTranspose2d,
Focus,
GhostConv,
LightConv,
RepConv,
SpatialAttention,
)
from .head import OBB, Classify, Detect, Pose, RTDETRDecoder, Segment, WorldDetect, v10Detect
from .transformer import (
AIFI,
MLP,
DeformableTransformerDecoder,
DeformableTransformerDecoderLayer,
LayerNorm2d,
MLPBlock,
MSDeformAttn,
TransformerBlock,
TransformerEncoderLayer,
TransformerLayer,
)
__all__ = (
"Conv",
"Conv2",
"LightConv",
"RepConv",
"DWConv",
"DWConvTranspose2d",
"ConvTranspose",
"Focus",
"GhostConv",
"ChannelAttention",
"SpatialAttention",
"CBAM",
"Concat",
"TransformerLayer",
"TransformerBlock",
"MLPBlock",
"LayerNorm2d",
"DFL",
"HGBlock",
"HGStem",
"SPP",
"SPPF",
"C1",
"C2",
"C3",
"C2f",
"C2fAttn",
"C3x",
"C3TR",
"C3Ghost",
"GhostBottleneck",
"Bottleneck",
"BottleneckCSP",
"Proto",
"Detect",
"Segment",
"Pose",
"Classify",
"TransformerEncoderLayer",
"RepC3",
"RTDETRDecoder",
"AIFI",
"DeformableTransformerDecoder",
"DeformableTransformerDecoderLayer",
"MSDeformAttn",
"MLP",
"ResNetLayer",
"OBB",
"WorldDetect",
"ImagePoolingAttn",
"ContrastiveHead",
"BNContrastiveHead",
"RepNCSPELAN4",
"ADown",
"SPPELAN",
"CBFuse",
"CBLinear",
"Silence",
"PSA",
"C2fCIB",
"SCDown",
"RepVGGDW",
"v10Detect"
)