Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from pathlib import Path | |
from ultralytics import SAM, YOLO | |
def auto_annotate(data, det_model="yolov8x.pt", sam_model="sam_b.pt", device="", output_dir=None): | |
""" | |
Automatically annotates images using a YOLO object detection model and a SAM segmentation model. | |
Args: | |
data (str): Path to a folder containing images to be annotated. | |
det_model (str, optional): Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'. | |
sam_model (str, optional): Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'. | |
device (str, optional): Device to run the models on. Defaults to an empty string (CPU or GPU, if available). | |
output_dir (str | None | optional): Directory to save the annotated results. | |
Defaults to a 'labels' folder in the same directory as 'data'. | |
Example: | |
```python | |
from ultralytics.data.annotator import auto_annotate | |
auto_annotate(data='ultralytics/assets', det_model='yolov8n.pt', sam_model='mobile_sam.pt') | |
``` | |
""" | |
det_model = YOLO(det_model) | |
sam_model = SAM(sam_model) | |
data = Path(data) | |
if not output_dir: | |
output_dir = data.parent / f"{data.stem}_auto_annotate_labels" | |
Path(output_dir).mkdir(exist_ok=True, parents=True) | |
det_results = det_model(data, stream=True, device=device) | |
for result in det_results: | |
class_ids = result.boxes.cls.int().tolist() # noqa | |
if len(class_ids): | |
boxes = result.boxes.xyxy # Boxes object for bbox outputs | |
sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device) | |
segments = sam_results[0].masks.xyn # noqa | |
with open(f"{Path(output_dir) / Path(result.path).stem}.txt", "w") as f: | |
for i in range(len(segments)): | |
s = segments[i] | |
if len(s) == 0: | |
continue | |
segment = map(str, segments[i].reshape(-1).tolist()) | |
f.write(f"{class_ids[i]} " + " ".join(segment) + "\n") | |