Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import tempfile | |
from ultralytics import YOLOv10 | |
def yolov10_inference(image, video, model_id, image_size, conf_threshold): | |
#model = YOLOv10.from_pretrained(f'jameslahm/{model_id}') | |
model = YOLOv10("best.pt") | |
if image: | |
results = model.predict(source=image, imgsz=image_size, conf=conf_threshold) | |
annotated_image = results[0].plot() | |
return annotated_image[:, :, ::-1], None | |
else: | |
video_path = tempfile.mktemp(suffix=".webm") | |
with open(video_path, "wb") as f: | |
with open(video, "rb") as g: | |
f.write(g.read()) | |
cap = cv2.VideoCapture(video_path) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
output_video_path = tempfile.mktemp(suffix=".webm") | |
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'vp80'), fps, (frame_width, frame_height)) | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
results = model.predict(source=frame, imgsz=image_size, conf=conf_threshold) | |
annotated_frame = results[0].plot() | |
out.write(annotated_frame) | |
cap.release() | |
out.release() | |
return None, output_video_path | |
def yolov10_inference_for_examples(image, model_path, image_size, conf_threshold): | |
annotated_image, _ = yolov10_inference(image, None, model_path, image_size, conf_threshold) | |
return annotated_image | |
def app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(type="pil", label="Image", visible=True) | |
video = gr.Video(label="Video", visible=False) | |
input_type = gr.Radio( | |
choices=["Image", "Video"], | |
value="Image", | |
label="Input Type", | |
) | |
model_id = gr.Dropdown( | |
label="Model", | |
choices=[ | |
"yolov10n", | |
"yolov10s", | |
"yolov10m", | |
"yolov10b", | |
"yolov10l", | |
"yolov10x", | |
], | |
value="yolov10m", | |
) | |
image_size = gr.Slider( | |
label="Image Size", | |
minimum=320, | |
maximum=1280, | |
step=32, | |
value=640, | |
) | |
conf_threshold = gr.Slider( | |
label="Confidence Threshold", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
value=0.25, | |
) | |
yolov10_infer = gr.Button(value="Detect Objects") | |
with gr.Column(): | |
output_image = gr.Image(type="numpy", label="Annotated Image", visible=True) | |
output_video = gr.Video(label="Annotated Video", visible=False) | |
def update_visibility(input_type): | |
image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False) | |
video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True) | |
output_image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False) | |
output_video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True) | |
return image, video, output_image, output_video | |
input_type.change( | |
fn=update_visibility, | |
inputs=[input_type], | |
outputs=[image, video, output_image, output_video], | |
) | |
def run_inference(image, video, model_id, image_size, conf_threshold, input_type): | |
if input_type == "Image": | |
return yolov10_inference(image, None, model_id, image_size, conf_threshold) | |
else: | |
return yolov10_inference(None, video, model_id, image_size, conf_threshold) | |
yolov10_infer.click( | |
fn=run_inference, | |
inputs=[image, video, model_id, image_size, conf_threshold, input_type], | |
outputs=[output_image, output_video], | |
) | |
gr.Examples( | |
examples=[ | |
[ | |
"ultralytics/assets/bus.jpg", | |
"yolov10s", | |
640, | |
0.25, | |
], | |
[ | |
"ultralytics/assets/zidane.jpg", | |
"yolov10s", | |
640, | |
0.25, | |
], | |
], | |
fn=yolov10_inference_for_examples, | |
inputs=[ | |
image, | |
model_id, | |
image_size, | |
conf_threshold, | |
], | |
outputs=[output_image], | |
cache_examples='lazy', | |
) | |
gradio_app = gr.Blocks() | |
with gradio_app: | |
gr.HTML( | |
""" | |
<h1 style='text-align: center'> | |
YOLOv10: Real-Time End-to-End Object Detection | |
</h1> | |
""") | |
gr.HTML( | |
""" | |
<h3 style='text-align: center'> | |
<a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a> | |
</h3> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
app() | |
if __name__ == '__main__': | |
gradio_app.launch(share=True) | |