Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from typing import List | |
from urllib.parse import urlsplit | |
import numpy as np | |
class TritonRemoteModel: | |
""" | |
Client for interacting with a remote Triton Inference Server model. | |
Attributes: | |
endpoint (str): The name of the model on the Triton server. | |
url (str): The URL of the Triton server. | |
triton_client: The Triton client (either HTTP or gRPC). | |
InferInput: The input class for the Triton client. | |
InferRequestedOutput: The output request class for the Triton client. | |
input_formats (List[str]): The data types of the model inputs. | |
np_input_formats (List[type]): The numpy data types of the model inputs. | |
input_names (List[str]): The names of the model inputs. | |
output_names (List[str]): The names of the model outputs. | |
""" | |
def __init__(self, url: str, endpoint: str = "", scheme: str = ""): | |
""" | |
Initialize the TritonRemoteModel. | |
Arguments may be provided individually or parsed from a collective 'url' argument of the form | |
<scheme>://<netloc>/<endpoint>/<task_name> | |
Args: | |
url (str): The URL of the Triton server. | |
endpoint (str): The name of the model on the Triton server. | |
scheme (str): The communication scheme ('http' or 'grpc'). | |
""" | |
if not endpoint and not scheme: # Parse all args from URL string | |
splits = urlsplit(url) | |
endpoint = splits.path.strip("/").split("/")[0] | |
scheme = splits.scheme | |
url = splits.netloc | |
self.endpoint = endpoint | |
self.url = url | |
# Choose the Triton client based on the communication scheme | |
if scheme == "http": | |
import tritonclient.http as client # noqa | |
self.triton_client = client.InferenceServerClient(url=self.url, verbose=False, ssl=False) | |
config = self.triton_client.get_model_config(endpoint) | |
else: | |
import tritonclient.grpc as client # noqa | |
self.triton_client = client.InferenceServerClient(url=self.url, verbose=False, ssl=False) | |
config = self.triton_client.get_model_config(endpoint, as_json=True)["config"] | |
# Sort output names alphabetically, i.e. 'output0', 'output1', etc. | |
config["output"] = sorted(config["output"], key=lambda x: x.get("name")) | |
# Define model attributes | |
type_map = {"TYPE_FP32": np.float32, "TYPE_FP16": np.float16, "TYPE_UINT8": np.uint8} | |
self.InferRequestedOutput = client.InferRequestedOutput | |
self.InferInput = client.InferInput | |
self.input_formats = [x["data_type"] for x in config["input"]] | |
self.np_input_formats = [type_map[x] for x in self.input_formats] | |
self.input_names = [x["name"] for x in config["input"]] | |
self.output_names = [x["name"] for x in config["output"]] | |
def __call__(self, *inputs: np.ndarray) -> List[np.ndarray]: | |
""" | |
Call the model with the given inputs. | |
Args: | |
*inputs (List[np.ndarray]): Input data to the model. | |
Returns: | |
(List[np.ndarray]): Model outputs. | |
""" | |
infer_inputs = [] | |
input_format = inputs[0].dtype | |
for i, x in enumerate(inputs): | |
if x.dtype != self.np_input_formats[i]: | |
x = x.astype(self.np_input_formats[i]) | |
infer_input = self.InferInput(self.input_names[i], [*x.shape], self.input_formats[i].replace("TYPE_", "")) | |
infer_input.set_data_from_numpy(x) | |
infer_inputs.append(infer_input) | |
infer_outputs = [self.InferRequestedOutput(output_name) for output_name in self.output_names] | |
outputs = self.triton_client.infer(model_name=self.endpoint, inputs=infer_inputs, outputs=infer_outputs) | |
return [outputs.as_numpy(output_name).astype(input_format) for output_name in self.output_names] | |