Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import math | |
import cv2 | |
from ultralytics.utils.checks import check_imshow | |
from ultralytics.utils.plotting import Annotator, colors | |
class DistanceCalculation: | |
"""A class to calculate distance between two objects in real-time video stream based on their tracks.""" | |
def __init__(self): | |
"""Initializes the distance calculation class with default values for Visual, Image, track and distance | |
parameters. | |
""" | |
# Visual & im0 information | |
self.im0 = None | |
self.annotator = None | |
self.view_img = False | |
self.line_color = (255, 255, 0) | |
self.centroid_color = (255, 0, 255) | |
# Predict/track information | |
self.clss = None | |
self.names = None | |
self.boxes = None | |
self.line_thickness = 2 | |
self.trk_ids = None | |
# Distance calculation information | |
self.centroids = [] | |
self.pixel_per_meter = 10 | |
# Mouse event | |
self.left_mouse_count = 0 | |
self.selected_boxes = {} | |
# Check if environment support imshow | |
self.env_check = check_imshow(warn=True) | |
def set_args( | |
self, | |
names, | |
pixels_per_meter=10, | |
view_img=False, | |
line_thickness=2, | |
line_color=(255, 255, 0), | |
centroid_color=(255, 0, 255), | |
): | |
""" | |
Configures the distance calculation and display parameters. | |
Args: | |
names (dict): object detection classes names | |
pixels_per_meter (int): Number of pixels in meter | |
view_img (bool): Flag indicating frame display | |
line_thickness (int): Line thickness for bounding boxes. | |
line_color (RGB): color of centroids line | |
centroid_color (RGB): colors of bbox centroids | |
""" | |
self.names = names | |
self.pixel_per_meter = pixels_per_meter | |
self.view_img = view_img | |
self.line_thickness = line_thickness | |
self.line_color = line_color | |
self.centroid_color = centroid_color | |
def mouse_event_for_distance(self, event, x, y, flags, param): | |
""" | |
This function is designed to move region with mouse events in a real-time video stream. | |
Args: | |
event (int): The type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.). | |
x (int): The x-coordinate of the mouse pointer. | |
y (int): The y-coordinate of the mouse pointer. | |
flags (int): Any flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY, | |
cv2.EVENT_FLAG_SHIFTKEY, etc.). | |
param (dict): Additional parameters you may want to pass to the function. | |
""" | |
global selected_boxes | |
global left_mouse_count | |
if event == cv2.EVENT_LBUTTONDOWN: | |
self.left_mouse_count += 1 | |
if self.left_mouse_count <= 2: | |
for box, track_id in zip(self.boxes, self.trk_ids): | |
if box[0] < x < box[2] and box[1] < y < box[3] and track_id not in self.selected_boxes: | |
self.selected_boxes[track_id] = [] | |
self.selected_boxes[track_id] = box | |
if event == cv2.EVENT_RBUTTONDOWN: | |
self.selected_boxes = {} | |
self.left_mouse_count = 0 | |
def extract_tracks(self, tracks): | |
""" | |
Extracts results from the provided data. | |
Args: | |
tracks (list): List of tracks obtained from the object tracking process. | |
""" | |
self.boxes = tracks[0].boxes.xyxy.cpu() | |
self.clss = tracks[0].boxes.cls.cpu().tolist() | |
self.trk_ids = tracks[0].boxes.id.int().cpu().tolist() | |
def calculate_centroid(self, box): | |
""" | |
Calculate the centroid of bounding box. | |
Args: | |
box (list): Bounding box data | |
""" | |
return int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2) | |
def calculate_distance(self, centroid1, centroid2): | |
""" | |
Calculate distance between two centroids. | |
Args: | |
centroid1 (point): First bounding box data | |
centroid2 (point): Second bounding box data | |
""" | |
pixel_distance = math.sqrt((centroid1[0] - centroid2[0]) ** 2 + (centroid1[1] - centroid2[1]) ** 2) | |
return pixel_distance / self.pixel_per_meter, (pixel_distance / self.pixel_per_meter) * 1000 | |
def start_process(self, im0, tracks): | |
""" | |
Calculate distance between two bounding boxes based on tracking data. | |
Args: | |
im0 (nd array): Image | |
tracks (list): List of tracks obtained from the object tracking process. | |
""" | |
self.im0 = im0 | |
if tracks[0].boxes.id is None: | |
if self.view_img: | |
self.display_frames() | |
return | |
self.extract_tracks(tracks) | |
self.annotator = Annotator(self.im0, line_width=2) | |
for box, cls, track_id in zip(self.boxes, self.clss, self.trk_ids): | |
self.annotator.box_label(box, color=colors(int(cls), True), label=self.names[int(cls)]) | |
if len(self.selected_boxes) == 2: | |
for trk_id, _ in self.selected_boxes.items(): | |
if trk_id == track_id: | |
self.selected_boxes[track_id] = box | |
if len(self.selected_boxes) == 2: | |
for trk_id, box in self.selected_boxes.items(): | |
centroid = self.calculate_centroid(self.selected_boxes[trk_id]) | |
self.centroids.append(centroid) | |
distance_m, distance_mm = self.calculate_distance(self.centroids[0], self.centroids[1]) | |
self.annotator.plot_distance_and_line( | |
distance_m, distance_mm, self.centroids, self.line_color, self.centroid_color | |
) | |
self.centroids = [] | |
if self.view_img and self.env_check: | |
self.display_frames() | |
return im0 | |
def display_frames(self): | |
"""Display frame.""" | |
cv2.namedWindow("Ultralytics Distance Estimation") | |
cv2.setMouseCallback("Ultralytics Distance Estimation", self.mouse_event_for_distance) | |
cv2.imshow("Ultralytics Distance Estimation", self.im0) | |
if cv2.waitKey(1) & 0xFF == ord("q"): | |
return | |
if __name__ == "__main__": | |
DistanceCalculation() | |