Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,85 +1,45 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
import gradio as gr
|
5 |
-
import
|
6 |
-
import os
|
7 |
from PIL import Image, ImageDraw
|
|
|
8 |
|
9 |
-
def calculate_snr(
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
# 计算信号和背景区域
|
16 |
-
signal = np.where(signal_mask, channel, 0)
|
17 |
-
background = np.where(~signal_mask, channel, 0)
|
18 |
|
19 |
-
#
|
20 |
-
|
|
|
21 |
|
22 |
-
#
|
23 |
-
|
|
|
24 |
|
25 |
-
#
|
26 |
-
snr =
|
27 |
|
28 |
-
return
|
29 |
|
30 |
-
def process_image(
|
31 |
-
#
|
32 |
-
|
|
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
channels = cv2.split(img_array)
|
40 |
-
channel_names = ['Red', 'Green', 'Blue']
|
41 |
|
|
|
42 |
results = []
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
signal_mean, background_std, snr, signal, background = calculate_snr(channel, roi)
|
47 |
-
|
48 |
-
results.append(f"{name} channel:\n"
|
49 |
-
f"信号平均强度(Signal): {signal_mean:.2f}\n"
|
50 |
-
f"背景标准差(Noise): {background_std:.2f}\n"
|
51 |
-
f"信噪比(SNR): {snr:.2f}\n")
|
52 |
-
|
53 |
-
# 创建结果图像
|
54 |
-
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))
|
55 |
-
ax1.imshow(signal, cmap='gray')
|
56 |
-
ax1.set_title(f'{name} Signal ROI')
|
57 |
-
ax2.imshow(background, cmap='gray')
|
58 |
-
ax2.set_title(f'{name} Background ROI')
|
59 |
-
|
60 |
-
# 保存图像结果到临时文件
|
61 |
-
result_filename = tempfile.mktemp(suffix='.png')
|
62 |
-
plt.savefig(result_filename)
|
63 |
-
plt.close(fig)
|
64 |
-
|
65 |
-
result_images.append(result_filename)
|
66 |
-
|
67 |
-
return "\n".join(results), result_images
|
68 |
|
69 |
-
|
70 |
-
iface = gr.Interface(
|
71 |
-
fn=process_image,
|
72 |
-
inputs=[
|
73 |
-
gr.Image(label="上传图像", type="pil"),
|
74 |
-
gr.Image(label="绘制ROI", type="pil", tool="sketch", interactive=True)
|
75 |
-
],
|
76 |
-
outputs=[
|
77 |
-
gr.Textbox(label="结果"),
|
78 |
-
gr.Gallery(label="ROI 图像")
|
79 |
-
],
|
80 |
-
title="图像SNR计算器",
|
81 |
-
description="上传一张图像,在第二个框中绘制感兴趣区域,然后点击提交按钮计算SNR。支持单通道和多通道图像。"
|
82 |
-
)
|
83 |
|
84 |
-
|
85 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
|
|
3 |
from PIL import Image, ImageDraw
|
4 |
+
import cv2
|
5 |
|
6 |
+
def calculate_snr(image, roi):
|
7 |
+
# Convert image to grayscale if it's not already
|
8 |
+
if len(image.shape) == 3:
|
9 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
10 |
+
roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Create a mask for the ROI
|
13 |
+
mask = np.zeros_like(image)
|
14 |
+
cv2.fillPoly(mask, [roi], 255)
|
15 |
|
16 |
+
# Calculate signal and noise
|
17 |
+
signal = np.mean(image[mask > 0])
|
18 |
+
noise = np.std(image[mask == 0])
|
19 |
|
20 |
+
# Calculate SNR
|
21 |
+
snr = signal / noise
|
22 |
|
23 |
+
return signal, noise, snr
|
24 |
|
25 |
+
def process_image(input_image, roi_points):
|
26 |
+
# Load the input image
|
27 |
+
image = Image.open(input_image)
|
28 |
+
image = np.array(image)
|
29 |
|
30 |
+
# Load the ROI image
|
31 |
+
roi_image = Image.new('L', (image.shape[1], image.shape[0]))
|
32 |
+
draw = ImageDraw.Draw(roi_image)
|
33 |
+
draw.polygon(roi_points, fill=255)
|
34 |
+
roi_image = np.array(roi_image)
|
|
|
|
|
35 |
|
36 |
+
# Calculate SNR for each channel
|
37 |
results = []
|
38 |
+
for i in range(image.shape[2]):
|
39 |
+
signal, noise, snr = calculate_snr(image[:, :, i], roi_image)
|
40 |
+
results.append((signal, noise, snr))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
return results, roi_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
iface = gr.Interface(fn=process_image, inputs=[gr.inputs.Image(), gr.inputs.Image()], outputs=[gr.outputs.Textbox(), gr.outputs.Image()], title="图像SNR计算器")
|
45 |
+
iface.launch()
|