Spaces:
Build error
Build error
| use ab_glyph::FontArc; | |
| use anyhow::Result; | |
| use image::{DynamicImage, GenericImageView, ImageBuffer}; | |
| use ndarray::{s, Array, Axis, IxDyn}; | |
| use rand::{thread_rng, Rng}; | |
| use std::path::PathBuf; | |
| use crate::{ | |
| gen_time_string, load_font, non_max_suppression, Args, Batch, Bbox, Embedding, OrtBackend, | |
| OrtConfig, OrtEP, Point2, YOLOResult, YOLOTask, SKELETON, | |
| }; | |
| pub struct YOLOv8 { | |
| // YOLOv8 model for all yolo-tasks | |
| engine: OrtBackend, | |
| nc: u32, | |
| nk: u32, | |
| nm: u32, | |
| height: u32, | |
| width: u32, | |
| batch: u32, | |
| task: YOLOTask, | |
| conf: f32, | |
| kconf: f32, | |
| iou: f32, | |
| names: Vec<String>, | |
| color_palette: Vec<(u8, u8, u8)>, | |
| profile: bool, | |
| plot: bool, | |
| } | |
| impl YOLOv8 { | |
| pub fn new(config: Args) -> Result<Self> { | |
| // execution provider | |
| let ep = if config.trt { | |
| OrtEP::Trt(config.device_id) | |
| } else if config.cuda { | |
| OrtEP::CUDA(config.device_id) | |
| } else { | |
| OrtEP::CPU | |
| }; | |
| // batch | |
| let batch = Batch { | |
| opt: config.batch, | |
| min: config.batch_min, | |
| max: config.batch_max, | |
| }; | |
| // build ort engine | |
| let ort_args = OrtConfig { | |
| ep, | |
| batch, | |
| f: config.model, | |
| task: config.task, | |
| trt_fp16: config.fp16, | |
| image_size: (config.height, config.width), | |
| }; | |
| let engine = OrtBackend::build(ort_args)?; | |
| // get batch, height, width, tasks, nc, nk, nm | |
| let (batch, height, width, task) = ( | |
| engine.batch(), | |
| engine.height(), | |
| engine.width(), | |
| engine.task(), | |
| ); | |
| let nc = engine.nc().or(config.nc).unwrap_or_else(|| { | |
| panic!("Failed to get num_classes, make it explicit with `--nc`"); | |
| }); | |
| let (nk, nm) = match task { | |
| YOLOTask::Pose => { | |
| let nk = engine.nk().or(config.nk).unwrap_or_else(|| { | |
| panic!("Failed to get num_keypoints, make it explicit with `--nk`"); | |
| }); | |
| (nk, 0) | |
| } | |
| YOLOTask::Segment => { | |
| let nm = engine.nm().or(config.nm).unwrap_or_else(|| { | |
| panic!("Failed to get num_masks, make it explicit with `--nm`"); | |
| }); | |
| (0, nm) | |
| } | |
| _ => (0, 0), | |
| }; | |
| // class names | |
| let names = engine.names().unwrap_or(vec!["Unknown".to_string()]); | |
| // color palette | |
| let mut rng = thread_rng(); | |
| let color_palette: Vec<_> = names | |
| .iter() | |
| .map(|_| { | |
| ( | |
| rng.gen_range(0..=255), | |
| rng.gen_range(0..=255), | |
| rng.gen_range(0..=255), | |
| ) | |
| }) | |
| .collect(); | |
| Ok(Self { | |
| engine, | |
| names, | |
| conf: config.conf, | |
| kconf: config.kconf, | |
| iou: config.iou, | |
| color_palette, | |
| profile: config.profile, | |
| plot: config.plot, | |
| nc, | |
| nk, | |
| nm, | |
| height, | |
| width, | |
| batch, | |
| task, | |
| }) | |
| } | |
| pub fn scale_wh(&self, w0: f32, h0: f32, w1: f32, h1: f32) -> (f32, f32, f32) { | |
| let r = (w1 / w0).min(h1 / h0); | |
| (r, (w0 * r).round(), (h0 * r).round()) | |
| } | |
| pub fn preprocess(&mut self, xs: &Vec<DynamicImage>) -> Result<Array<f32, IxDyn>> { | |
| let mut ys = | |
| Array::ones((xs.len(), 3, self.height() as usize, self.width() as usize)).into_dyn(); | |
| ys.fill(144.0 / 255.0); | |
| for (idx, x) in xs.iter().enumerate() { | |
| let img = match self.task() { | |
| YOLOTask::Classify => x.resize_exact( | |
| self.width(), | |
| self.height(), | |
| image::imageops::FilterType::Triangle, | |
| ), | |
| _ => { | |
| let (w0, h0) = x.dimensions(); | |
| let w0 = w0 as f32; | |
| let h0 = h0 as f32; | |
| let (_, w_new, h_new) = | |
| self.scale_wh(w0, h0, self.width() as f32, self.height() as f32); // f32 round | |
| x.resize_exact( | |
| w_new as u32, | |
| h_new as u32, | |
| if let YOLOTask::Segment = self.task() { | |
| image::imageops::FilterType::CatmullRom | |
| } else { | |
| image::imageops::FilterType::Triangle | |
| }, | |
| ) | |
| } | |
| }; | |
| for (x, y, rgb) in img.pixels() { | |
| let x = x as usize; | |
| let y = y as usize; | |
| let [r, g, b, _] = rgb.0; | |
| ys[[idx, 0, y, x]] = (r as f32) / 255.0; | |
| ys[[idx, 1, y, x]] = (g as f32) / 255.0; | |
| ys[[idx, 2, y, x]] = (b as f32) / 255.0; | |
| } | |
| } | |
| Ok(ys) | |
| } | |
| pub fn run(&mut self, xs: &Vec<DynamicImage>) -> Result<Vec<YOLOResult>> { | |
| // pre-process | |
| let t_pre = std::time::Instant::now(); | |
| let xs_ = self.preprocess(xs)?; | |
| if self.profile { | |
| println!("[Model Preprocess]: {:?}", t_pre.elapsed()); | |
| } | |
| // run | |
| let t_run = std::time::Instant::now(); | |
| let ys = self.engine.run(xs_, self.profile)?; | |
| if self.profile { | |
| println!("[Model Inference]: {:?}", t_run.elapsed()); | |
| } | |
| // post-process | |
| let t_post = std::time::Instant::now(); | |
| let ys = self.postprocess(ys, xs)?; | |
| if self.profile { | |
| println!("[Model Postprocess]: {:?}", t_post.elapsed()); | |
| } | |
| // plot and save | |
| if self.plot { | |
| self.plot_and_save(&ys, xs, Some(&SKELETON)); | |
| } | |
| Ok(ys) | |
| } | |
| pub fn postprocess( | |
| &self, | |
| xs: Vec<Array<f32, IxDyn>>, | |
| xs0: &[DynamicImage], | |
| ) -> Result<Vec<YOLOResult>> { | |
| if let YOLOTask::Classify = self.task() { | |
| let mut ys = Vec::new(); | |
| let preds = &xs[0]; | |
| for batch in preds.axis_iter(Axis(0)) { | |
| ys.push(YOLOResult::new( | |
| Some(Embedding::new(batch.into_owned())), | |
| None, | |
| None, | |
| None, | |
| )); | |
| } | |
| Ok(ys) | |
| } else { | |
| const CXYWH_OFFSET: usize = 4; // cxcywh | |
| const KPT_STEP: usize = 3; // xyconf | |
| let preds = &xs[0]; | |
| let protos = { | |
| if xs.len() > 1 { | |
| Some(&xs[1]) | |
| } else { | |
| None | |
| } | |
| }; | |
| let mut ys = Vec::new(); | |
| for (idx, anchor) in preds.axis_iter(Axis(0)).enumerate() { | |
| // [bs, 4 + nc + nm, anchors] | |
| // input image | |
| let width_original = xs0[idx].width() as f32; | |
| let height_original = xs0[idx].height() as f32; | |
| let ratio = (self.width() as f32 / width_original) | |
| .min(self.height() as f32 / height_original); | |
| // save each result | |
| let mut data: Vec<(Bbox, Option<Vec<Point2>>, Option<Vec<f32>>)> = Vec::new(); | |
| for pred in anchor.axis_iter(Axis(1)) { | |
| // split preds for different tasks | |
| let bbox = pred.slice(s![0..CXYWH_OFFSET]); | |
| let clss = pred.slice(s![CXYWH_OFFSET..CXYWH_OFFSET + self.nc() as usize]); | |
| let kpts = { | |
| if let YOLOTask::Pose = self.task() { | |
| Some(pred.slice(s![pred.len() - KPT_STEP * self.nk() as usize..])) | |
| } else { | |
| None | |
| } | |
| }; | |
| let coefs = { | |
| if let YOLOTask::Segment = self.task() { | |
| Some(pred.slice(s![pred.len() - self.nm() as usize..]).to_vec()) | |
| } else { | |
| None | |
| } | |
| }; | |
| // confidence and id | |
| let (id, &confidence) = clss | |
| .into_iter() | |
| .enumerate() | |
| .reduce(|max, x| if x.1 > max.1 { x } else { max }) | |
| .unwrap(); // definitely will not panic! | |
| // confidence filter | |
| if confidence < self.conf { | |
| continue; | |
| } | |
| // bbox re-scale | |
| let cx = bbox[0] / ratio; | |
| let cy = bbox[1] / ratio; | |
| let w = bbox[2] / ratio; | |
| let h = bbox[3] / ratio; | |
| let x = cx - w / 2.; | |
| let y = cy - h / 2.; | |
| let y_bbox = Bbox::new( | |
| x.max(0.0f32).min(width_original), | |
| y.max(0.0f32).min(height_original), | |
| w, | |
| h, | |
| id, | |
| confidence, | |
| ); | |
| // kpts | |
| let y_kpts = { | |
| if let Some(kpts) = kpts { | |
| let mut kpts_ = Vec::new(); | |
| // rescale | |
| for i in 0..self.nk() as usize { | |
| let kx = kpts[KPT_STEP * i] / ratio; | |
| let ky = kpts[KPT_STEP * i + 1] / ratio; | |
| let kconf = kpts[KPT_STEP * i + 2]; | |
| if kconf < self.kconf { | |
| kpts_.push(Point2::default()); | |
| } else { | |
| kpts_.push(Point2::new_with_conf( | |
| kx.max(0.0f32).min(width_original), | |
| ky.max(0.0f32).min(height_original), | |
| kconf, | |
| )); | |
| } | |
| } | |
| Some(kpts_) | |
| } else { | |
| None | |
| } | |
| }; | |
| // data merged | |
| data.push((y_bbox, y_kpts, coefs)); | |
| } | |
| // nms | |
| non_max_suppression(&mut data, self.iou); | |
| // decode | |
| let mut y_bboxes: Vec<Bbox> = Vec::new(); | |
| let mut y_kpts: Vec<Vec<Point2>> = Vec::new(); | |
| let mut y_masks: Vec<Vec<u8>> = Vec::new(); | |
| for elem in data.into_iter() { | |
| if let Some(kpts) = elem.1 { | |
| y_kpts.push(kpts) | |
| } | |
| // decode masks | |
| if let Some(coefs) = elem.2 { | |
| let proto = protos.unwrap().slice(s![idx, .., .., ..]); | |
| let (nm, nh, nw) = proto.dim(); | |
| // coefs * proto -> mask | |
| let coefs = Array::from_shape_vec((1, nm), coefs)?; // (n, nm) | |
| let proto = proto.to_owned(); | |
| let proto = proto.to_shape((nm, nh * nw))?; // (nm, nh*nw) | |
| let mask = coefs.dot(&proto); // (nh, nw, n) | |
| let mask = mask.to_shape((nh, nw, 1))?; | |
| // build image from ndarray | |
| let mask_im: ImageBuffer<image::Luma<_>, Vec<f32>> = | |
| match ImageBuffer::from_raw( | |
| nw as u32, | |
| nh as u32, | |
| mask.to_owned().into_raw_vec_and_offset().0, | |
| ) { | |
| Some(image) => image, | |
| None => panic!("can not create image from ndarray"), | |
| }; | |
| let mut mask_im = image::DynamicImage::from(mask_im); // -> dyn | |
| // rescale masks | |
| let (_, w_mask, h_mask) = | |
| self.scale_wh(width_original, height_original, nw as f32, nh as f32); | |
| let mask_cropped = mask_im.crop(0, 0, w_mask as u32, h_mask as u32); | |
| let mask_original = mask_cropped.resize_exact( | |
| // resize_to_fill | |
| width_original as u32, | |
| height_original as u32, | |
| match self.task() { | |
| YOLOTask::Segment => image::imageops::FilterType::CatmullRom, | |
| _ => image::imageops::FilterType::Triangle, | |
| }, | |
| ); | |
| // crop-mask with bbox | |
| let mut mask_original_cropped = mask_original.into_luma8(); | |
| for y in 0..height_original as usize { | |
| for x in 0..width_original as usize { | |
| if x < elem.0.xmin() as usize | |
| || x > elem.0.xmax() as usize | |
| || y < elem.0.ymin() as usize | |
| || y > elem.0.ymax() as usize | |
| { | |
| mask_original_cropped.put_pixel( | |
| x as u32, | |
| y as u32, | |
| image::Luma([0u8]), | |
| ); | |
| } | |
| } | |
| } | |
| y_masks.push(mask_original_cropped.into_raw()); | |
| } | |
| y_bboxes.push(elem.0); | |
| } | |
| // save each result | |
| let y = YOLOResult { | |
| probs: None, | |
| bboxes: if !y_bboxes.is_empty() { | |
| Some(y_bboxes) | |
| } else { | |
| None | |
| }, | |
| keypoints: if !y_kpts.is_empty() { | |
| Some(y_kpts) | |
| } else { | |
| None | |
| }, | |
| masks: if !y_masks.is_empty() { | |
| Some(y_masks) | |
| } else { | |
| None | |
| }, | |
| }; | |
| ys.push(y); | |
| } | |
| Ok(ys) | |
| } | |
| } | |
| pub fn plot_and_save( | |
| &self, | |
| ys: &[YOLOResult], | |
| xs0: &[DynamicImage], | |
| skeletons: Option<&[(usize, usize)]>, | |
| ) { | |
| // check font then load | |
| let font: FontArc = load_font(); | |
| for (_idb, (img0, y)) in xs0.iter().zip(ys.iter()).enumerate() { | |
| let mut img = img0.to_rgb8(); | |
| // draw for classifier | |
| if let Some(probs) = y.probs() { | |
| for (i, k) in probs.topk(5).iter().enumerate() { | |
| let legend = format!("{} {:.2}%", self.names[k.0], k.1); | |
| let scale = 32; | |
| let legend_size = img.width().max(img.height()) / scale; | |
| let x = img.width() / 20; | |
| let y = img.height() / 20 + i as u32 * legend_size; | |
| imageproc::drawing::draw_text_mut( | |
| &mut img, | |
| image::Rgb([0, 255, 0]), | |
| x as i32, | |
| y as i32, | |
| legend_size as f32, | |
| &font, | |
| &legend, | |
| ); | |
| } | |
| } | |
| // draw bboxes & keypoints | |
| if let Some(bboxes) = y.bboxes() { | |
| for (_idx, bbox) in bboxes.iter().enumerate() { | |
| // rect | |
| imageproc::drawing::draw_hollow_rect_mut( | |
| &mut img, | |
| imageproc::rect::Rect::at(bbox.xmin() as i32, bbox.ymin() as i32) | |
| .of_size(bbox.width() as u32, bbox.height() as u32), | |
| image::Rgb(self.color_palette[bbox.id()].into()), | |
| ); | |
| // text | |
| let legend = format!("{} {:.2}%", self.names[bbox.id()], bbox.confidence()); | |
| let scale = 40; | |
| let legend_size = img.width().max(img.height()) / scale; | |
| imageproc::drawing::draw_text_mut( | |
| &mut img, | |
| image::Rgb(self.color_palette[bbox.id()].into()), | |
| bbox.xmin() as i32, | |
| (bbox.ymin() - legend_size as f32) as i32, | |
| legend_size as f32, | |
| &font, | |
| &legend, | |
| ); | |
| } | |
| } | |
| // draw kpts | |
| if let Some(keypoints) = y.keypoints() { | |
| for kpts in keypoints.iter() { | |
| for kpt in kpts.iter() { | |
| // filter | |
| if kpt.confidence() < self.kconf { | |
| continue; | |
| } | |
| // draw point | |
| imageproc::drawing::draw_filled_circle_mut( | |
| &mut img, | |
| (kpt.x() as i32, kpt.y() as i32), | |
| 2, | |
| image::Rgb([0, 255, 0]), | |
| ); | |
| } | |
| // draw skeleton if has | |
| if let Some(skeletons) = skeletons { | |
| for &(idx1, idx2) in skeletons.iter() { | |
| let kpt1 = &kpts[idx1]; | |
| let kpt2 = &kpts[idx2]; | |
| if kpt1.confidence() < self.kconf || kpt2.confidence() < self.kconf { | |
| continue; | |
| } | |
| imageproc::drawing::draw_line_segment_mut( | |
| &mut img, | |
| (kpt1.x(), kpt1.y()), | |
| (kpt2.x(), kpt2.y()), | |
| image::Rgb([233, 14, 57]), | |
| ); | |
| } | |
| } | |
| } | |
| } | |
| // draw mask | |
| if let Some(masks) = y.masks() { | |
| for (mask, _bbox) in masks.iter().zip(y.bboxes().unwrap().iter()) { | |
| let mask_nd: ImageBuffer<image::Luma<_>, Vec<u8>> = | |
| match ImageBuffer::from_vec(img.width(), img.height(), mask.to_vec()) { | |
| Some(image) => image, | |
| None => panic!("can not crate image from ndarray"), | |
| }; | |
| for _x in 0..img.width() { | |
| for _y in 0..img.height() { | |
| let mask_p = imageproc::drawing::Canvas::get_pixel(&mask_nd, _x, _y); | |
| if mask_p.0[0] > 0 { | |
| let mut img_p = imageproc::drawing::Canvas::get_pixel(&img, _x, _y); | |
| // img_p.0[2] = self.color_palette[bbox.id()].2 / 2; | |
| // img_p.0[1] = self.color_palette[bbox.id()].1 / 2; | |
| // img_p.0[0] = self.color_palette[bbox.id()].0 / 2; | |
| img_p.0[2] /= 2; | |
| img_p.0[1] = 255 - (255 - img_p.0[2]) / 2; | |
| img_p.0[0] /= 2; | |
| imageproc::drawing::Canvas::draw_pixel(&mut img, _x, _y, img_p) | |
| } | |
| } | |
| } | |
| } | |
| } | |
| // mkdir and save | |
| let mut runs = PathBuf::from("runs"); | |
| if !runs.exists() { | |
| std::fs::create_dir_all(&runs).unwrap(); | |
| } | |
| runs.push(gen_time_string("-")); | |
| let saveout = format!("{}.jpg", runs.to_str().unwrap()); | |
| let _ = img.save(saveout); | |
| } | |
| } | |
| pub fn summary(&self) { | |
| println!( | |
| "\nSummary:\n\ | |
| > Task: {:?}{}\n\ | |
| > EP: {:?} {}\n\ | |
| > Dtype: {:?}\n\ | |
| > Batch: {} ({}), Height: {} ({}), Width: {} ({})\n\ | |
| > nc: {} nk: {}, nm: {}, conf: {}, kconf: {}, iou: {}\n\ | |
| ", | |
| self.task(), | |
| match self.engine.author().zip(self.engine.version()) { | |
| Some((author, ver)) => format!(" ({} {})", author, ver), | |
| None => String::from(""), | |
| }, | |
| self.engine.ep(), | |
| if let OrtEP::CPU = self.engine.ep() { | |
| "" | |
| } else { | |
| "(May still fall back to CPU)" | |
| }, | |
| self.engine.dtype(), | |
| self.batch(), | |
| if self.engine.is_batch_dynamic() { | |
| "Dynamic" | |
| } else { | |
| "Const" | |
| }, | |
| self.height(), | |
| if self.engine.is_height_dynamic() { | |
| "Dynamic" | |
| } else { | |
| "Const" | |
| }, | |
| self.width(), | |
| if self.engine.is_width_dynamic() { | |
| "Dynamic" | |
| } else { | |
| "Const" | |
| }, | |
| self.nc(), | |
| self.nk(), | |
| self.nm(), | |
| self.conf, | |
| self.kconf, | |
| self.iou, | |
| ); | |
| } | |
| pub fn engine(&self) -> &OrtBackend { | |
| &self.engine | |
| } | |
| pub fn conf(&self) -> f32 { | |
| self.conf | |
| } | |
| pub fn set_conf(&mut self, val: f32) { | |
| self.conf = val; | |
| } | |
| pub fn conf_mut(&mut self) -> &mut f32 { | |
| &mut self.conf | |
| } | |
| pub fn kconf(&self) -> f32 { | |
| self.kconf | |
| } | |
| pub fn iou(&self) -> f32 { | |
| self.iou | |
| } | |
| pub fn task(&self) -> &YOLOTask { | |
| &self.task | |
| } | |
| pub fn batch(&self) -> u32 { | |
| self.batch | |
| } | |
| pub fn width(&self) -> u32 { | |
| self.width | |
| } | |
| pub fn height(&self) -> u32 { | |
| self.height | |
| } | |
| pub fn nc(&self) -> u32 { | |
| self.nc | |
| } | |
| pub fn nk(&self) -> u32 { | |
| self.nk | |
| } | |
| pub fn nm(&self) -> u32 { | |
| self.nm | |
| } | |
| pub fn names(&self) -> &Vec<String> { | |
| &self.names | |
| } | |
| } | |