glenn-jocher
commited on
Commit
•
df7988d
1
Parent(s):
8cab44e
onnx_export.py
Browse files- .github/workflows/greetings.yml +1 -1
- README.md +1 -1
- detect.py +3 -17
- models/onnx_export.py +32 -0
.github/workflows/greetings.yml
CHANGED
@@ -10,7 +10,7 @@ jobs:
|
|
10 |
with:
|
11 |
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
12 |
pr-message: 'Hello @${{ github.actor }}, thank you for submitting a PR! We will respond as soon as possible.'
|
13 |
-
issue-message:
|
14 |
Hello @${{ github.actor }}, thank you for your interest in our work! Please visit our [Custom Training Tutorial](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) to get started, and see our [Google Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb), [Docker Image](https://hub.docker.com/r/ultralytics/yolov5), and [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart) for example environments.
|
15 |
|
16 |
If this is a bug report, please provide screenshots and **minimum viable code to reproduce your issue**, otherwise we can not help you.
|
|
|
10 |
with:
|
11 |
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
12 |
pr-message: 'Hello @${{ github.actor }}, thank you for submitting a PR! We will respond as soon as possible.'
|
13 |
+
issue-message: |
|
14 |
Hello @${{ github.actor }}, thank you for your interest in our work! Please visit our [Custom Training Tutorial](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) to get started, and see our [Google Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb), [Docker Image](https://hub.docker.com/r/ultralytics/yolov5), and [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart) for example environments.
|
15 |
|
16 |
If this is a bug report, please provide screenshots and **minimum viable code to reproduce your issue**, otherwise we can not help you.
|
README.md
CHANGED
@@ -108,4 +108,4 @@ To access an up-to-date working environment (with all dependencies including CUD
|
|
108 |
|
109 |
## Contact
|
110 |
|
111 |
-
**Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit
|
|
|
108 |
|
109 |
## Contact
|
110 |
|
111 |
+
**Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.
|
detect.py
CHANGED
@@ -7,12 +7,12 @@ ONNX_EXPORT = False
|
|
7 |
|
8 |
|
9 |
def detect(save_img=False):
|
10 |
-
|
11 |
-
|
12 |
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
|
13 |
|
14 |
# Initialize
|
15 |
-
device = torch_utils.select_device(
|
16 |
if os.path.exists(out):
|
17 |
shutil.rmtree(out) # delete output folder
|
18 |
os.makedirs(out) # make new output folder
|
@@ -35,20 +35,6 @@ def detect(save_img=False):
|
|
35 |
# Fuse Conv2d + BatchNorm2d layers
|
36 |
# model.fuse()
|
37 |
|
38 |
-
# Export mode
|
39 |
-
if ONNX_EXPORT:
|
40 |
-
model.fuse()
|
41 |
-
img = torch.zeros((1, 3) + imgsz) # (1, 3, 320, 192)
|
42 |
-
f = opt.weights.replace(opt.weights.split('.')[-1], 'onnx') # *.onnx filename
|
43 |
-
torch.onnx.export(model, img, f, verbose=False, opset_version=11)
|
44 |
-
|
45 |
-
# Validate exported model
|
46 |
-
import onnx
|
47 |
-
model = onnx.load(f) # Load the ONNX model
|
48 |
-
onnx.checker.check_model(model) # Check that the IR is well formed
|
49 |
-
print(onnx.helper.printable_graph(model.graph)) # Print a human readable representation of the graph
|
50 |
-
return
|
51 |
-
|
52 |
# Half precision
|
53 |
half = half and device.type != 'cpu' # half precision only supported on CUDA
|
54 |
if half:
|
|
|
7 |
|
8 |
|
9 |
def detect(save_img=False):
|
10 |
+
out, source, weights, half, view_img, save_txt, imgsz = \
|
11 |
+
opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt, opt.img_size
|
12 |
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
|
13 |
|
14 |
# Initialize
|
15 |
+
device = torch_utils.select_device(opt.device)
|
16 |
if os.path.exists(out):
|
17 |
shutil.rmtree(out) # delete output folder
|
18 |
os.makedirs(out) # make new output folder
|
|
|
35 |
# Fuse Conv2d + BatchNorm2d layers
|
36 |
# model.fuse()
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# Half precision
|
39 |
half = half and device.type != 'cpu' # half precision only supported on CUDA
|
40 |
if half:
|
models/onnx_export.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
import onnx
|
4 |
+
|
5 |
+
from models.common import *
|
6 |
+
|
7 |
+
if __name__ == '__main__':
|
8 |
+
parser = argparse.ArgumentParser()
|
9 |
+
parser.add_argument('--weights', default='../weights/yolov5s.pt', help='model path RELATIVE to ./models/')
|
10 |
+
parser.add_argument('--img-size', default=640, help='inference size (pixels)')
|
11 |
+
parser.add_argument('--batch-size', default=1, help='batch size')
|
12 |
+
opt = parser.parse_args()
|
13 |
+
|
14 |
+
# Parameters
|
15 |
+
f = opt.weights.replace('.pt', '.onnx') # onnx filename
|
16 |
+
img = torch.zeros((opt.batch_size, 3, opt.img_size, opt.img_size)) # image size, (1, 3, 320, 192) iDetection
|
17 |
+
|
18 |
+
# Load pytorch model
|
19 |
+
google_utils.attempt_download(opt.weights)
|
20 |
+
model = torch.load(opt.weights)['model']
|
21 |
+
model.eval()
|
22 |
+
# model.fuse() # optionally fuse Conv2d + BatchNorm2d layers TODO
|
23 |
+
|
24 |
+
# Export to onnx
|
25 |
+
model.model[-1].export = True # set Detect() layer export=True
|
26 |
+
torch.onnx.export(model, img, f, verbose=False, opset_version=11)
|
27 |
+
|
28 |
+
# Check onnx model
|
29 |
+
model = onnx.load(f) # load onnx model
|
30 |
+
onnx.checker.check_model(model) # check onnx model
|
31 |
+
print(onnx.helper.printable_graph(model.graph)) # print a human readable representation of the graph
|
32 |
+
print('Export complete. ONNX model saved to %s\nView with https://github.com/lutzroeder/netron' % f)
|