glenn-jocher
commited on
Commit
β’
cff7d2a
1
Parent(s):
0c93ec7
Created using Colaboratory
Browse files- tutorial.ipynb +6 -9
tutorial.ipynb
CHANGED
@@ -661,14 +661,14 @@
|
|
661 |
{
|
662 |
"cell_type": "markdown",
|
663 |
"metadata": {
|
664 |
-
"id": "
|
665 |
},
|
666 |
"source": [
|
667 |
"# 3. Train\n",
|
668 |
-
"[<img src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615338ba77195c71bd2c5ab1_computer-vision-flow.png\">](https://roboflow.com/?ref=ultralytics)\n",
|
669 |
-
"*Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package*\n",
|
670 |
"\n",
|
671 |
-
"<
|
|
|
|
|
672 |
"\n",
|
673 |
"Train a YOLOv5s model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`.\n",
|
674 |
"\n",
|
@@ -676,7 +676,7 @@
|
|
676 |
"automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
|
677 |
"- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
|
678 |
"- **Training Results** are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n",
|
679 |
-
"<br>\n",
|
680 |
"\n",
|
681 |
"## Train on Custom Data with Roboflow π NEW\n",
|
682 |
"\n",
|
@@ -684,12 +684,9 @@
|
|
684 |
"\n",
|
685 |
"- Custom Training Example: [https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/](https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/?ref=ultralytics)\n",
|
686 |
"- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/yolov5-custom-training-tutorial/blob/main/yolov5-custom-training.ipynb)\n",
|
687 |
-
"\n",
|
688 |
"<br>\n",
|
689 |
"\n",
|
690 |
-
"
|
691 |
-
"\n",
|
692 |
-
"*Label images lightning fast (including with model-assisted labeling)*"
|
693 |
]
|
694 |
},
|
695 |
{
|
|
|
661 |
{
|
662 |
"cell_type": "markdown",
|
663 |
"metadata": {
|
664 |
+
"id": "ZY2VXXXu74w5"
|
665 |
},
|
666 |
"source": [
|
667 |
"# 3. Train\n",
|
|
|
|
|
668 |
"\n",
|
669 |
+
"<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615338ba77195c71bd2c5ab1_computer-vision-flow.png\"/></a></p>\n",
|
670 |
+
"Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
|
671 |
+
"<br><br>\n",
|
672 |
"\n",
|
673 |
"Train a YOLOv5s model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`.\n",
|
674 |
"\n",
|
|
|
676 |
"automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
|
677 |
"- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
|
678 |
"- **Training Results** are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n",
|
679 |
+
"<br><br>\n",
|
680 |
"\n",
|
681 |
"## Train on Custom Data with Roboflow π NEW\n",
|
682 |
"\n",
|
|
|
684 |
"\n",
|
685 |
"- Custom Training Example: [https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/](https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/?ref=ultralytics)\n",
|
686 |
"- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/yolov5-custom-training-tutorial/blob/main/yolov5-custom-training.ipynb)\n",
|
|
|
687 |
"<br>\n",
|
688 |
"\n",
|
689 |
+
"<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/6152a275ad4b4ac20cd2e21a_roboflow-annotate.gif\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
|
|
|
|
|
690 |
]
|
691 |
},
|
692 |
{
|