glenn-jocher commited on
Commit
cff7d2a
β€’
1 Parent(s): 0c93ec7

Created using Colaboratory

Browse files
Files changed (1) hide show
  1. tutorial.ipynb +6 -9
tutorial.ipynb CHANGED
@@ -661,14 +661,14 @@
661
  {
662
  "cell_type": "markdown",
663
  "metadata": {
664
- "id": "VUOiNLtMP5aG"
665
  },
666
  "source": [
667
  "# 3. Train\n",
668
- "[<img src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615338ba77195c71bd2c5ab1_computer-vision-flow.png\">](https://roboflow.com/?ref=ultralytics)\n",
669
- "*Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package*\n",
670
  "\n",
671
- "<br>\n",
 
 
672
  "\n",
673
  "Train a YOLOv5s model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`.\n",
674
  "\n",
@@ -676,7 +676,7 @@
676
  "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
677
  "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
678
  "- **Training Results** are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n",
679
- "<br>\n",
680
  "\n",
681
  "## Train on Custom Data with Roboflow 🌟 NEW\n",
682
  "\n",
@@ -684,12 +684,9 @@
684
  "\n",
685
  "- Custom Training Example: [https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/](https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/?ref=ultralytics)\n",
686
  "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/yolov5-custom-training-tutorial/blob/main/yolov5-custom-training.ipynb)\n",
687
- "\n",
688
  "<br>\n",
689
  "\n",
690
- "[<img src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/6152a275ad4b4ac20cd2e21a_roboflow-annotate.gif\">](https://roboflow.com/?ref=ultralytics)\n",
691
- "\n",
692
- "*Label images lightning fast (including with model-assisted labeling)*"
693
  ]
694
  },
695
  {
 
661
  {
662
  "cell_type": "markdown",
663
  "metadata": {
664
+ "id": "ZY2VXXXu74w5"
665
  },
666
  "source": [
667
  "# 3. Train\n",
 
 
668
  "\n",
669
+ "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615338ba77195c71bd2c5ab1_computer-vision-flow.png\"/></a></p>\n",
670
+ "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
671
+ "<br><br>\n",
672
  "\n",
673
  "Train a YOLOv5s model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`.\n",
674
  "\n",
 
676
  "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
677
  "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
678
  "- **Training Results** are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n",
679
+ "<br><br>\n",
680
  "\n",
681
  "## Train on Custom Data with Roboflow 🌟 NEW\n",
682
  "\n",
 
684
  "\n",
685
  "- Custom Training Example: [https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/](https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/?ref=ultralytics)\n",
686
  "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/yolov5-custom-training-tutorial/blob/main/yolov5-custom-training.ipynb)\n",
 
687
  "<br>\n",
688
  "\n",
689
+ "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/6152a275ad4b4ac20cd2e21a_roboflow-annotate.gif\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
 
 
690
  ]
691
  },
692
  {