Zengyf-CVer pre-commit-ci[bot] glenn-jocher commited on
Commit
c264795
·
unverified ·
1 Parent(s): cc1d7df

Add mdformat to precommit checks and update other version (#7529)

Browse files

* Update .pre-commit-config.yaml

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update .pre-commit-config.yaml

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update CONTRIBUTING.md

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update README.md

* Update README.md

* Update README.md

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

.github/CODE_OF_CONDUCT.md CHANGED
@@ -17,23 +17,23 @@ diverse, inclusive, and healthy community.
17
  Examples of behavior that contributes to a positive environment for our
18
  community include:
19
 
20
- * Demonstrating empathy and kindness toward other people
21
- * Being respectful of differing opinions, viewpoints, and experiences
22
- * Giving and gracefully accepting constructive feedback
23
- * Accepting responsibility and apologizing to those affected by our mistakes,
24
  and learning from the experience
25
- * Focusing on what is best not just for us as individuals, but for the
26
  overall community
27
 
28
  Examples of unacceptable behavior include:
29
 
30
- * The use of sexualized language or imagery, and sexual attention or
31
  advances of any kind
32
- * Trolling, insulting or derogatory comments, and personal or political attacks
33
- * Public or private harassment
34
- * Publishing others' private information, such as a physical or email
35
  address, without their explicit permission
36
- * Other conduct which could reasonably be considered inappropriate in a
37
  professional setting
38
 
39
  ## Enforcement Responsibilities
@@ -121,8 +121,8 @@ https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
121
  Community Impact Guidelines were inspired by [Mozilla's code of conduct
122
  enforcement ladder](https://github.com/mozilla/diversity).
123
 
124
- [homepage]: https://www.contributor-covenant.org
125
-
126
  For answers to common questions about this code of conduct, see the FAQ at
127
  https://www.contributor-covenant.org/faq. Translations are available at
128
  https://www.contributor-covenant.org/translations.
 
 
 
17
  Examples of behavior that contributes to a positive environment for our
18
  community include:
19
 
20
+ - Demonstrating empathy and kindness toward other people
21
+ - Being respectful of differing opinions, viewpoints, and experiences
22
+ - Giving and gracefully accepting constructive feedback
23
+ - Accepting responsibility and apologizing to those affected by our mistakes,
24
  and learning from the experience
25
+ - Focusing on what is best not just for us as individuals, but for the
26
  overall community
27
 
28
  Examples of unacceptable behavior include:
29
 
30
+ - The use of sexualized language or imagery, and sexual attention or
31
  advances of any kind
32
+ - Trolling, insulting or derogatory comments, and personal or political attacks
33
+ - Public or private harassment
34
+ - Publishing others' private information, such as a physical or email
35
  address, without their explicit permission
36
+ - Other conduct which could reasonably be considered inappropriate in a
37
  professional setting
38
 
39
  ## Enforcement Responsibilities
 
121
  Community Impact Guidelines were inspired by [Mozilla's code of conduct
122
  enforcement ladder](https://github.com/mozilla/diversity).
123
 
 
 
124
  For answers to common questions about this code of conduct, see the FAQ at
125
  https://www.contributor-covenant.org/faq. Translations are available at
126
  https://www.contributor-covenant.org/translations.
127
+
128
+ [homepage]: https://www.contributor-covenant.org
.pre-commit-config.yaml CHANGED
@@ -13,7 +13,7 @@ ci:
13
 
14
  repos:
15
  - repo: https://github.com/pre-commit/pre-commit-hooks
16
- rev: v4.1.0
17
  hooks:
18
  - id: end-of-file-fixer
19
  - id: trailing-whitespace
@@ -24,7 +24,7 @@ repos:
24
  - id: check-docstring-first
25
 
26
  - repo: https://github.com/asottile/pyupgrade
27
- rev: v2.31.1
28
  hooks:
29
  - id: pyupgrade
30
  args: [--py36-plus]
@@ -42,15 +42,17 @@ repos:
42
  - id: yapf
43
  name: YAPF formatting
44
 
45
- # TODO
46
- #- repo: https://github.com/executablebooks/mdformat
47
- # rev: 0.7.7
48
- # hooks:
49
- # - id: mdformat
50
- # additional_dependencies:
51
- # - mdformat-gfm
52
- # - mdformat-black
53
- # - mdformat_frontmatter
 
 
54
 
55
  - repo: https://github.com/asottile/yesqa
56
  rev: v1.3.0
 
13
 
14
  repos:
15
  - repo: https://github.com/pre-commit/pre-commit-hooks
16
+ rev: v4.2.0
17
  hooks:
18
  - id: end-of-file-fixer
19
  - id: trailing-whitespace
 
24
  - id: check-docstring-first
25
 
26
  - repo: https://github.com/asottile/pyupgrade
27
+ rev: v2.32.0
28
  hooks:
29
  - id: pyupgrade
30
  args: [--py36-plus]
 
42
  - id: yapf
43
  name: YAPF formatting
44
 
45
+ - repo: https://github.com/executablebooks/mdformat
46
+ rev: 0.7.14
47
+ hooks:
48
+ - id: mdformat
49
+ additional_dependencies:
50
+ - mdformat-gfm
51
+ - mdformat-black
52
+ exclude: |
53
+ (?x)^(
54
+ README.md
55
+ )$
56
 
57
  - repo: https://github.com/asottile/yesqa
58
  rev: v1.3.0
CONTRIBUTING.md CHANGED
@@ -18,16 +18,19 @@ Submitting a PR is easy! This example shows how to submit a PR for updating `req
18
  ### 1. Select File to Update
19
 
20
  Select `requirements.txt` to update by clicking on it in GitHub.
 
21
  <p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
22
 
23
  ### 2. Click 'Edit this file'
24
 
25
  Button is in top-right corner.
 
26
  <p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
27
 
28
  ### 3. Make Changes
29
 
30
  Change `matplotlib` version from `3.2.2` to `3.3`.
 
31
  <p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
32
 
33
  ### 4. Preview Changes and Submit PR
@@ -35,6 +38,7 @@ Change `matplotlib` version from `3.2.2` to `3.3`.
35
  Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
36
  for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
37
  changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
 
38
  <p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
39
 
40
  ### PR recommendations
@@ -70,21 +74,21 @@ understand and use to **reproduce** the problem. This is referred to by communit
70
  a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
71
  the problem should be:
72
 
73
- * ✅ **Minimal** – Use as little code as possible that still produces the same problem
74
- * ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
75
- * ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
76
 
77
  In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
78
  should be:
79
 
80
- * ✅ **Current** – Verify that your code is up-to-date with current
81
  GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new
82
  copy to ensure your problem has not already been resolved by previous commits.
83
- * ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this
84
  repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
85
 
86
- If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛 **
87
- Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing
88
  a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
89
  understand and diagnose your problem.
90
 
 
18
  ### 1. Select File to Update
19
 
20
  Select `requirements.txt` to update by clicking on it in GitHub.
21
+
22
  <p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
23
 
24
  ### 2. Click 'Edit this file'
25
 
26
  Button is in top-right corner.
27
+
28
  <p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
29
 
30
  ### 3. Make Changes
31
 
32
  Change `matplotlib` version from `3.2.2` to `3.3`.
33
+
34
  <p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
35
 
36
  ### 4. Preview Changes and Submit PR
 
38
  Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
39
  for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
40
  changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
41
+
42
  <p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
43
 
44
  ### PR recommendations
 
74
  a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
75
  the problem should be:
76
 
77
+ - ✅ **Minimal** – Use as little code as possible that still produces the same problem
78
+ - ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
79
+ - ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
80
 
81
  In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
82
  should be:
83
 
84
+ - ✅ **Current** – Verify that your code is up-to-date with current
85
  GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new
86
  copy to ensure your problem has not already been resolved by previous commits.
87
+ - ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this
88
  repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
89
 
90
+ If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛
91
+ **Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing
92
  a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
93
  understand and diagnose your problem.
94
 
README.md CHANGED
@@ -103,8 +103,6 @@ results.print() # or .show(), .save(), .crop(), .pandas(), etc.
103
 
104
  </details>
105
 
106
-
107
-
108
  <details>
109
  <summary>Inference with detect.py</summary>
110
 
@@ -149,20 +147,20 @@ python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 12
149
  <details open>
150
  <summary>Tutorials</summary>
151
 
152
- * [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)&nbsp; 🚀 RECOMMENDED
153
- * [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)&nbsp; ☘️
154
  RECOMMENDED
155
- * [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)&nbsp; 🌟 NEW
156
- * [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)&nbsp; 🌟 NEW
157
- * [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
158
- * [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)&nbsp; ⭐ NEW
159
- * [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
160
- * [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
161
- * [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
162
- * [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
163
- * [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
164
- * [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)&nbsp; ⭐ NEW
165
- * [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998)&nbsp; ⭐ NEW
166
 
167
  </details>
168
 
@@ -203,7 +201,6 @@ Get started in seconds with our verified environments. Click each icon below for
203
  |:-:|:-:|
204
  |Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |
205
 
206
-
207
  <!-- ## <div align="center">Compete and Win</div>
208
 
209
  We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes!
@@ -224,18 +221,15 @@ We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competi
224
  <details>
225
  <summary>Figure Notes (click to expand)</summary>
226
 
227
- * **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
228
- * **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
229
- * **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
230
- * **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
 
231
  </details>
232
 
233
  ### Pretrained Checkpoints
234
 
235
- [assets]: https://github.com/ultralytics/yolov5/releases
236
-
237
- [TTA]: https://github.com/ultralytics/yolov5/issues/303
238
-
239
  |Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B)
240
  |--- |--- |--- |--- |--- |--- |--- |--- |---
241
  |[YOLOv5n][assets] |640 |28.0 |45.7 |**45** |**6.3**|**0.6**|**1.9**|**4.5**
@@ -253,10 +247,10 @@ We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competi
253
  <details>
254
  <summary>Table Notes (click to expand)</summary>
255
 
256
- * All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
257
- * **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
258
- * **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
259
- * **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
260
 
261
  </details>
262
 
@@ -302,3 +296,6 @@ professional support requests please visit [https://ultralytics.com/contact](htt
302
  <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
303
  </a>
304
  </div>
 
 
 
 
103
 
104
  </details>
105
 
 
 
106
  <details>
107
  <summary>Inference with detect.py</summary>
108
 
 
147
  <details open>
148
  <summary>Tutorials</summary>
149
 
150
+ - [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)  🚀 RECOMMENDED
151
+ - [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)  ☘️
152
  RECOMMENDED
153
+ - [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)  🌟 NEW
154
+ - [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)  🌟 NEW
155
+ - [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
156
+ - [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)  ⭐ NEW
157
+ - [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
158
+ - [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
159
+ - [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
160
+ - [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
161
+ - [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
162
+ - [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)  ⭐ NEW
163
+ - [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998)  ⭐ NEW
164
 
165
  </details>
166
 
 
201
  |:-:|:-:|
202
  |Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |
203
 
 
204
  <!-- ## <div align="center">Compete and Win</div>
205
 
206
  We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes!
 
221
  <details>
222
  <summary>Figure Notes (click to expand)</summary>
223
 
224
+ - **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
225
+ - **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
226
+ - **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
227
+ - **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
228
+
229
  </details>
230
 
231
  ### Pretrained Checkpoints
232
 
 
 
 
 
233
  |Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B)
234
  |--- |--- |--- |--- |--- |--- |--- |--- |---
235
  |[YOLOv5n][assets] |640 |28.0 |45.7 |**45** |**6.3**|**0.6**|**1.9**|**4.5**
 
247
  <details>
248
  <summary>Table Notes (click to expand)</summary>
249
 
250
+ - All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
251
+ - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
252
+ - **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
253
+ - **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
254
 
255
  </details>
256
 
 
296
  <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
297
  </a>
298
  </div>
299
+
300
+ [assets]: https://github.com/ultralytics/yolov5/releases
301
+ [tta]: https://github.com/ultralytics/yolov5/issues/303
utils/loggers/wandb/README.md CHANGED
@@ -1,66 +1,72 @@
1
  📚 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 🚀. UPDATED 29 September 2021.
2
- * [About Weights & Biases](#about-weights-&-biases)
3
- * [First-Time Setup](#first-time-setup)
4
- * [Viewing runs](#viewing-runs)
5
- * [Disabling wandb](#disabling-wandb)
6
- * [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
7
- * [Reports: Share your work with the world!](#reports)
 
8
 
9
  ## About Weights & Biases
 
10
  Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models — architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
11
 
12
  Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
13
 
14
- * [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
15
- * [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
16
- * [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
17
- * [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
18
- * [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
19
- * [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
20
 
21
  ## First-Time Setup
 
22
  <details open>
23
  <summary> Toggle Details </summary>
24
  When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
25
 
26
  W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
27
 
28
- ```shell
29
- $ python train.py --project ... --name ...
30
- ```
31
 
32
  YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
33
  <img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
34
 
35
-
36
- </details>
37
 
38
  ## Viewing Runs
 
39
  <details open>
40
  <summary> Toggle Details </summary>
41
  Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
42
 
43
- * Training & Validation losses
44
- * Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
45
- * Learning Rate over time
46
- * A bounding box debugging panel, showing the training progress over time
47
- * GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
48
- * System: Disk I/0, CPU utilization, RAM memory usage
49
- * Your trained model as W&B Artifact
50
- * Environment: OS and Python types, Git repository and state, **training command**
51
 
52
  <p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
53
  </details>
54
 
55
- ## Disabling wandb
56
- * training after running `wandb disabled` inside that directory creates no wandb run
57
- ![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png)
 
58
 
59
- * To enable wandb again, run `wandb online`
60
- ![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png)
61
 
62
  ## Advanced Usage
 
63
  You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
 
64
  <details open>
65
  <h3> 1: Train and Log Evaluation simultaneousy </h3>
66
  This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
@@ -71,18 +77,20 @@ You can leverage W&B artifacts and Tables integration to easily visualize and ma
71
  <b>Code</b> <code> $ python train.py --upload_data val</code>
72
 
73
  ![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png)
74
- </details>
75
 
76
- <h3>2. Visualize and Version Datasets</h3>
 
 
77
  Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
78
  <details>
79
  <summary> <b>Usage</b> </summary>
80
  <b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
81
 
82
- ![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
83
- </details>
 
84
 
85
- <h3> 3: Train using dataset artifact </h3>
86
  When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
87
  can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
88
  <details>
@@ -90,51 +98,54 @@ You can leverage W&B artifacts and Tables integration to easily visualize and ma
90
  <b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>
91
 
92
  ![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
93
- </details>
94
 
95
- <h3> 4: Save model checkpoints as artifacts </h3>
 
 
96
  To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
97
  You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
98
 
99
- <details>
100
  <summary> <b>Usage</b> </summary>
101
  <b>Code</b> <code> $ python train.py --save_period 1 </code>
102
 
103
  ![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
104
- </details>
105
 
106
  </details>
107
 
108
- <h3> 5: Resume runs from checkpoint artifacts. </h3>
 
 
109
  Any run can be resumed using artifacts if the <code>--resume</code> argument starts with <code>wandb-artifact://</code> prefix followed by the run path, i.e, <code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
110
 
111
- <details>
112
  <summary> <b>Usage</b> </summary>
113
  <b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
114
 
115
  ![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
116
- </details>
117
 
118
- <h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
 
 
119
  <b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
120
  The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or
121
  train from <code>_wandb.yaml</code> file and set <code>--save_period</code>
122
 
123
- <details>
124
  <summary> <b>Usage</b> </summary>
125
  <b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
126
 
127
  ![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
128
- </details>
129
 
130
  </details>
131
 
132
- <h3> Reports </h3>
 
 
133
  W&B Reports can be created from your saved runs for sharing online. Once a report is created you will receive a link you can use to publically share your results. Here is an example report created from the COCO128 tutorial trainings of all four YOLOv5 models ([link](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY)).
134
 
135
  <img width="900" alt="Weights & Biases Reports" src="https://user-images.githubusercontent.com/26833433/135394029-a17eaf86-c6c1-4b1d-bb80-b90e83aaffa7.png">
136
 
137
-
138
  ## Environments
139
 
140
  YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
@@ -144,7 +155,6 @@ YOLOv5 may be run in any of the following up-to-date verified environments (with
144
  - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
145
  - **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
146
 
147
-
148
  ## Status
149
 
150
  ![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)
 
1
  📚 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 🚀. UPDATED 29 September 2021.
2
+
3
+ - [About Weights & Biases](#about-weights-&-biases)
4
+ - [First-Time Setup](#first-time-setup)
5
+ - [Viewing runs](#viewing-runs)
6
+ - [Disabling wandb](#disabling-wandb)
7
+ - [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
8
+ - [Reports: Share your work with the world!](#reports)
9
 
10
  ## About Weights & Biases
11
+
12
  Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models — architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
13
 
14
  Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
15
 
16
+ - [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
17
+ - [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
18
+ - [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
19
+ - [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
20
+ - [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
21
+ - [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
22
 
23
  ## First-Time Setup
24
+
25
  <details open>
26
  <summary> Toggle Details </summary>
27
  When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
28
 
29
  W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
30
 
31
+ ```shell
32
+ $ python train.py --project ... --name ...
33
+ ```
34
 
35
  YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
36
  <img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
37
 
38
+ </details>
 
39
 
40
  ## Viewing Runs
41
+
42
  <details open>
43
  <summary> Toggle Details </summary>
44
  Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
45
 
46
+ - Training & Validation losses
47
+ - Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
48
+ - Learning Rate over time
49
+ - A bounding box debugging panel, showing the training progress over time
50
+ - GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
51
+ - System: Disk I/0, CPU utilization, RAM memory usage
52
+ - Your trained model as W&B Artifact
53
+ - Environment: OS and Python types, Git repository and state, **training command**
54
 
55
  <p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
56
  </details>
57
 
58
+ ## Disabling wandb
59
+
60
+ - training after running `wandb disabled` inside that directory creates no wandb run
61
+ ![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png)
62
 
63
+ - To enable wandb again, run `wandb online`
64
+ ![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png)
65
 
66
  ## Advanced Usage
67
+
68
  You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
69
+
70
  <details open>
71
  <h3> 1: Train and Log Evaluation simultaneousy </h3>
72
  This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
 
77
  <b>Code</b> <code> $ python train.py --upload_data val</code>
78
 
79
  ![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png)
 
80
 
81
+ </details>
82
+
83
+ <h3>2. Visualize and Version Datasets</h3>
84
  Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
85
  <details>
86
  <summary> <b>Usage</b> </summary>
87
  <b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
88
 
89
+ ![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
90
+
91
+ </details>
92
 
93
+ <h3> 3: Train using dataset artifact </h3>
94
  When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
95
  can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
96
  <details>
 
98
  <b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>
99
 
100
  ![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
 
101
 
102
+ </details>
103
+
104
+ <h3> 4: Save model checkpoints as artifacts </h3>
105
  To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
106
  You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
107
 
108
+ <details>
109
  <summary> <b>Usage</b> </summary>
110
  <b>Code</b> <code> $ python train.py --save_period 1 </code>
111
 
112
  ![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
 
113
 
114
  </details>
115
 
116
+ </details>
117
+
118
+ <h3> 5: Resume runs from checkpoint artifacts. </h3>
119
  Any run can be resumed using artifacts if the <code>--resume</code> argument starts with <code>wandb-artifact://</code> prefix followed by the run path, i.e, <code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
120
 
121
+ <details>
122
  <summary> <b>Usage</b> </summary>
123
  <b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
124
 
125
  ![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
 
126
 
127
+ </details>
128
+
129
+ <h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
130
  <b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
131
  The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or
132
  train from <code>_wandb.yaml</code> file and set <code>--save_period</code>
133
 
134
+ <details>
135
  <summary> <b>Usage</b> </summary>
136
  <b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
137
 
138
  ![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
 
139
 
140
  </details>
141
 
142
+ </details>
143
+
144
+ <h3> Reports </h3>
145
  W&B Reports can be created from your saved runs for sharing online. Once a report is created you will receive a link you can use to publically share your results. Here is an example report created from the COCO128 tutorial trainings of all four YOLOv5 models ([link](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY)).
146
 
147
  <img width="900" alt="Weights & Biases Reports" src="https://user-images.githubusercontent.com/26833433/135394029-a17eaf86-c6c1-4b1d-bb80-b90e83aaffa7.png">
148
 
 
149
  ## Environments
150
 
151
  YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
 
155
  - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
156
  - **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
157
 
 
158
  ## Status
159
 
160
  ![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)