glenn-jocher commited on
Commit
b810b21
1 Parent(s): d5d1604

augmented inference

Browse files
Files changed (2) hide show
  1. models/yolo.py +2 -2
  2. utils/torch_utils.py +1 -1
models/yolo.py CHANGED
@@ -72,8 +72,8 @@ class Model(nn.Module):
72
  s = [0.83, 0.67] # scales
73
  y = []
74
  for i, xi in enumerate((x,
75
- torch_utils.scale_img(x.flip(3), s[0], same_shape=False), # flip-lr and scale
76
- torch_utils.scale_img(x, s[1], same_shape=False), # scale
77
  )):
78
  # cv2.imwrite('img%g.jpg' % i, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1])
79
  y.append(self.forward_once(xi)[0])
 
72
  s = [0.83, 0.67] # scales
73
  y = []
74
  for i, xi in enumerate((x,
75
+ torch_utils.scale_img(x.flip(3), s[0]), # flip-lr and scale
76
+ torch_utils.scale_img(x, s[1]), # scale
77
  )):
78
  # cv2.imwrite('img%g.jpg' % i, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1])
79
  y.append(self.forward_once(xi)[0])
utils/torch_utils.py CHANGED
@@ -135,7 +135,7 @@ def load_classifier(name='resnet101', n=2):
135
  return model
136
 
137
 
138
- def scale_img(img, ratio=1.0, same_shape=True): # img(16,3,256,416), r=ratio
139
  # scales img(bs,3,y,x) by ratio
140
  h, w = img.shape[2:]
141
  s = (int(h * ratio), int(w * ratio)) # new size
 
135
  return model
136
 
137
 
138
+ def scale_img(img, ratio=1.0, same_shape=False): # img(16,3,256,416), r=ratio
139
  # scales img(bs,3,y,x) by ratio
140
  h, w = img.shape[2:]
141
  s = (int(h * ratio), int(w * ratio)) # new size