glenn-jocher commited on
Commit
a814720
·
1 Parent(s): 1e25775

PyTorch Hub updates

Browse files
README.md CHANGED
@@ -87,7 +87,7 @@ To access an up-to-date working environment (with all dependencies including CUD
87
 
88
  - **GCP** Deep Learning VM with $300 free credit offer: See our [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
89
  - **Google Colab Notebook** with 12 hours of free GPU time. <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
90
- - **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart)
91
 
92
 
93
  ## Citation
 
87
 
88
  - **GCP** Deep Learning VM with $300 free credit offer: See our [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
89
  - **Google Colab Notebook** with 12 hours of free GPU time. <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
90
+ - **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
91
 
92
 
93
  ## Citation
hubconf.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/
2
+
3
+ Usage:
4
+ import torch
5
+ model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80)
6
+ """
7
+
8
+ dependencies = ['torch', 'pyyaml']
9
+ import torch
10
+
11
+ from models.yolo import Model
12
+ from utils import google_utils
13
+
14
+
15
+ def create(name, pretrained, channels, classes):
16
+ """Creates a specified YOLOv5 model
17
+
18
+ Arguments:
19
+ name (str): name of model, i.e. 'yolov5s'
20
+ pretrained (bool): load pretrained weights into the model
21
+ channels (int): number of input channels
22
+ classes (int): number of model classes
23
+
24
+ Returns:
25
+ pytorch model
26
+ """
27
+ model = Model('models/%s.yaml' % name, channels, classes)
28
+ if pretrained:
29
+ ckpt = '%s.pt' % name # checkpoint filename
30
+ google_utils.attempt_download(ckpt) # download if not found locally
31
+ state_dict = torch.load(ckpt)['model'].state_dict()
32
+ state_dict = {k: v for k, v in state_dict if model.state_dict()[k].numel() == v.numel()} # filter
33
+ model.load_state_dict(state_dict, strict=False) # load
34
+ return model
35
+
36
+
37
+ def yolov5s(pretrained=False, channels=3, classes=80):
38
+ """YOLOv5-small model from https://github.com/ultralytics/yolov5
39
+
40
+ Arguments:
41
+ pretrained (bool): load pretrained weights into the model, default=False
42
+ channels (int): number of input channels, default=3
43
+ classes (int): number of model classes, default=80
44
+
45
+ Returns:
46
+ pytorch model
47
+ """
48
+ return create('yolov5s', pretrained, channels, classes)
49
+
50
+
51
+ def yolov5m(pretrained=False, channels=3, classes=80):
52
+ """YOLOv5-medium model from https://github.com/ultralytics/yolov5
53
+
54
+ Arguments:
55
+ pretrained (bool): load pretrained weights into the model, default=False
56
+ channels (int): number of input channels, default=3
57
+ classes (int): number of model classes, default=80
58
+
59
+ Returns:
60
+ pytorch model
61
+ """
62
+ return create('yolov5m', pretrained, channels, classes)
63
+
64
+
65
+ def yolov5l(pretrained=False, channels=3, classes=80):
66
+ """YOLOv5-large model from https://github.com/ultralytics/yolov5
67
+
68
+ Arguments:
69
+ pretrained (bool): load pretrained weights into the model, default=False
70
+ channels (int): number of input channels, default=3
71
+ classes (int): number of model classes, default=80
72
+
73
+ Returns:
74
+ pytorch model
75
+ """
76
+ return create('yolov5l', pretrained, channels, classes)
77
+
78
+
79
+ def yolov5x(pretrained=False, channels=3, classes=80):
80
+ """YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
81
+
82
+ Arguments:
83
+ pretrained (bool): load pretrained weights into the model, default=False
84
+ channels (int): number of input channels, default=3
85
+ classes (int): number of model classes, default=80
86
+
87
+ Returns:
88
+ pytorch model
89
+ """
90
+ return create('yolov5x', pretrained, channels, classes)
models/common.py CHANGED
@@ -1,8 +1,6 @@
1
  # This file contains modules common to various models
2
 
3
 
4
- import torch.nn.functional as F
5
-
6
  from utils.utils import *
7
 
8
 
@@ -58,17 +56,6 @@ class BottleneckCSP(nn.Module):
58
  return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
59
 
60
 
61
- class ConvPlus(nn.Module):
62
- # Plus-shaped convolution
63
- def __init__(self, c1, c2, k=3, s=1, g=1, bias=True): # ch_in, ch_out, kernel, stride, groups
64
- super(ConvPlus, self).__init__()
65
- self.cv1 = nn.Conv2d(c1, c2, (k, 1), s, (k // 2, 0), groups=g, bias=bias)
66
- self.cv2 = nn.Conv2d(c1, c2, (1, k), s, (0, k // 2), groups=g, bias=bias)
67
-
68
- def forward(self, x):
69
- return self.cv1(x) + self.cv2(x)
70
-
71
-
72
  class SPP(nn.Module):
73
  # Spatial pyramid pooling layer used in YOLOv3-SPP
74
  def __init__(self, c1, c2, k=(5, 9, 13)):
@@ -107,27 +94,3 @@ class Concat(nn.Module):
107
 
108
  def forward(self, x):
109
  return torch.cat(x, self.d)
110
-
111
-
112
- class MixConv2d(nn.Module):
113
- # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
114
- def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
115
- super(MixConv2d, self).__init__()
116
- groups = len(k)
117
- if equal_ch: # equal c_ per group
118
- i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
119
- c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
120
- else: # equal weight.numel() per group
121
- b = [c2] + [0] * groups
122
- a = np.eye(groups + 1, groups, k=-1)
123
- a -= np.roll(a, 1, axis=1)
124
- a *= np.array(k) ** 2
125
- a[0] = 1
126
- c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
127
-
128
- self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
129
- self.bn = nn.BatchNorm2d(c2)
130
- self.act = nn.LeakyReLU(0.1, inplace=True)
131
-
132
- def forward(self, x):
133
- return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
 
1
  # This file contains modules common to various models
2
 
3
 
 
 
4
  from utils.utils import *
5
 
6
 
 
56
  return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
57
 
58
 
 
 
 
 
 
 
 
 
 
 
 
59
  class SPP(nn.Module):
60
  # Spatial pyramid pooling layer used in YOLOv3-SPP
61
  def __init__(self, c1, c2, k=(5, 9, 13)):
 
94
 
95
  def forward(self, x):
96
  return torch.cat(x, self.d)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/experimental.py CHANGED
@@ -2,7 +2,7 @@ from models.common import *
2
 
3
 
4
  class Sum(nn.Module):
5
- # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
6
  def __init__(self, n, weight=False): # n: number of inputs
7
  super(Sum, self).__init__()
8
  self.weight = weight # apply weights boolean
@@ -23,6 +23,7 @@ class Sum(nn.Module):
23
 
24
 
25
  class GhostConv(nn.Module):
 
26
  def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
27
  super(GhostConv, self).__init__()
28
  c_ = c2 // 2 # hidden channels
@@ -35,6 +36,7 @@ class GhostConv(nn.Module):
35
 
36
 
37
  class GhostBottleneck(nn.Module):
 
38
  def __init__(self, c1, c2, k, s):
39
  super(GhostBottleneck, self).__init__()
40
  c_ = c2 // 2
@@ -46,3 +48,38 @@ class GhostBottleneck(nn.Module):
46
 
47
  def forward(self, x):
48
  return self.conv(x) + self.shortcut(x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
 
4
  class Sum(nn.Module):
5
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
6
  def __init__(self, n, weight=False): # n: number of inputs
7
  super(Sum, self).__init__()
8
  self.weight = weight # apply weights boolean
 
23
 
24
 
25
  class GhostConv(nn.Module):
26
+ # Ghost Convolution https://github.com/huawei-noah/ghostnet
27
  def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
28
  super(GhostConv, self).__init__()
29
  c_ = c2 // 2 # hidden channels
 
36
 
37
 
38
  class GhostBottleneck(nn.Module):
39
+ # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
40
  def __init__(self, c1, c2, k, s):
41
  super(GhostBottleneck, self).__init__()
42
  c_ = c2 // 2
 
48
 
49
  def forward(self, x):
50
  return self.conv(x) + self.shortcut(x)
51
+
52
+
53
+ class ConvPlus(nn.Module):
54
+ # Plus-shaped convolution
55
+ def __init__(self, c1, c2, k=3, s=1, g=1, bias=True): # ch_in, ch_out, kernel, stride, groups
56
+ super(ConvPlus, self).__init__()
57
+ self.cv1 = nn.Conv2d(c1, c2, (k, 1), s, (k // 2, 0), groups=g, bias=bias)
58
+ self.cv2 = nn.Conv2d(c1, c2, (1, k), s, (0, k // 2), groups=g, bias=bias)
59
+
60
+ def forward(self, x):
61
+ return self.cv1(x) + self.cv2(x)
62
+
63
+
64
+ class MixConv2d(nn.Module):
65
+ # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
66
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
67
+ super(MixConv2d, self).__init__()
68
+ groups = len(k)
69
+ if equal_ch: # equal c_ per group
70
+ i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
71
+ c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
72
+ else: # equal weight.numel() per group
73
+ b = [c2] + [0] * groups
74
+ a = np.eye(groups + 1, groups, k=-1)
75
+ a -= np.roll(a, 1, axis=1)
76
+ a *= np.array(k) ** 2
77
+ a[0] = 1
78
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
79
+
80
+ self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
81
+ self.bn = nn.BatchNorm2d(c2)
82
+ self.act = nn.LeakyReLU(0.1, inplace=True)
83
+
84
+ def forward(self, x):
85
+ return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
models/yolo.py CHANGED
@@ -2,7 +2,7 @@ import argparse
2
 
3
  import yaml
4
 
5
- from models.common import *
6
 
7
 
8
  class Detect(nn.Module):
@@ -56,12 +56,12 @@ class Model(nn.Module):
56
  # Define model
57
  if nc:
58
  self.md['nc'] = nc # override yaml value
59
- self.model, self.save, ch = parse_model(self.md, ch=[ch]) # model, savelist, ch_out
60
- # print([x.shape for x in self.forward(torch.zeros(1, 3, 64, 64))])
61
 
62
  # Build strides, anchors
63
  m = self.model[-1] # Detect()
64
- m.stride = torch.tensor([64 / x.shape[-2] for x in self.forward(torch.zeros(1, 3, 64, 64))]) # forward
65
  m.anchors /= m.stride.view(-1, 1, 1)
66
  self.stride = m.stride
67
 
@@ -200,7 +200,7 @@ def parse_model(md, ch): # model_dict, input_channels(3)
200
  save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
201
  layers.append(m_)
202
  ch.append(c2)
203
- return nn.Sequential(*layers), sorted(save), ch
204
 
205
 
206
  if __name__ == '__main__':
 
2
 
3
  import yaml
4
 
5
+ from models.experimental import *
6
 
7
 
8
  class Detect(nn.Module):
 
56
  # Define model
57
  if nc:
58
  self.md['nc'] = nc # override yaml value
59
+ self.model, self.save = parse_model(self.md, ch=[ch]) # model, savelist, ch_out
60
+ # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
61
 
62
  # Build strides, anchors
63
  m = self.model[-1] # Detect()
64
+ m.stride = torch.tensor([64 / x.shape[-2] for x in self.forward(torch.zeros(1, ch, 64, 64))]) # forward
65
  m.anchors /= m.stride.view(-1, 1, 1)
66
  self.stride = m.stride
67
 
 
200
  save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
201
  layers.append(m_)
202
  ch.append(c2)
203
+ return nn.Sequential(*layers), sorted(save)
204
 
205
 
206
  if __name__ == '__main__':
models/yolov3-spp_csp.yaml DELETED
@@ -1,55 +0,0 @@
1
- # parameters
2
- nc: 80 # number of classes
3
- depth_multiple: 1.0 # expand model depth
4
- width_multiple: 1.0 # expand layer channels
5
-
6
- # anchors
7
- anchors:
8
- - [10,13, 16,30, 33,23] # P3/8
9
- - [30,61, 62,45, 59,119] # P4/16
10
- - [116,90, 156,198, 373,326] # P5/32
11
-
12
- # darknet53 backbone
13
- backbone:
14
- # [from, number, module, args]
15
- [[-1, 1, Conv, [32, 3, 1]], # 0
16
- [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
- [-1, 1, BottleneckCSP, [64]],
18
- [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
- [-1, 2, BottleneckCSP, [128]],
20
- [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
- [-1, 8, BottleneckCSP, [256]],
22
- [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
- [-1, 8, BottleneckCSP, [512]],
24
- [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
- [-1, 4, BottleneckCSP, [1024]], # 10
26
- ]
27
-
28
- # yolov3-spp head
29
- # na = len(anchors[0])
30
- head:
31
- [[-1, 1, Bottleneck, [1024, False]], # 11
32
- [-1, 1, SPP, [512, [5, 9, 13]]],
33
- [-1, 1, Conv, [1024, 3, 1]],
34
- [-1, 1, Conv, [512, 1, 1]],
35
- [-1, 1, Conv, [1024, 3, 1]],
36
- [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 16 (P5/32-large)
37
-
38
- [-3, 1, Conv, [256, 1, 1]],
39
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40
- [[-1, 8], 1, Concat, [1]], # cat backbone P4
41
- [-1, 1, Bottleneck, [512, False]],
42
- [-1, 1, Bottleneck, [512, False]],
43
- [-1, 1, Conv, [256, 1, 1]],
44
- [-1, 1, Conv, [512, 3, 1]],
45
- [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 24 (P4/16-medium)
46
-
47
- [-3, 1, Conv, [128, 1, 1]],
48
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
49
- [[-1, 6], 1, Concat, [1]], # cat backbone P3
50
- [-1, 1, Bottleneck, [256, False]],
51
- [-1, 2, Bottleneck, [256, False]],
52
- [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 30 (P3/8-small)
53
-
54
- [[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
55
- ]