glenn-jocher commited on
Commit
96e36a7
·
unverified ·
1 Parent(s): 3764277

New CSV Logger (#4148)

Browse files

* New CSV Logger

* cleanup

* move batch plots into Logger

* rename comment

* Remove total loss from progress bar

* mloss :-1 bug fix

* Update plot_results()

* Update plot_results()

* plot_results bug fix

Files changed (6) hide show
  1. .gitignore +1 -0
  2. train.py +11 -29
  3. utils/loggers/__init__.py +38 -25
  4. utils/loss.py +1 -2
  5. utils/plots.py +16 -52
  6. val.py +1 -1
.gitignore CHANGED
@@ -31,6 +31,7 @@ data/*
31
  !data/*.sh
32
 
33
  results*.txt
 
34
 
35
  # Datasets -------------------------------------------------------------------------------------------------------------
36
  coco/
 
31
  !data/*.sh
32
 
33
  results*.txt
34
+ results*.csv
35
 
36
  # Datasets -------------------------------------------------------------------------------------------------------------
37
  coco/
train.py CHANGED
@@ -12,7 +12,6 @@ import sys
12
  import time
13
  from copy import deepcopy
14
  from pathlib import Path
15
- from threading import Thread
16
 
17
  import math
18
  import numpy as np
@@ -38,7 +37,7 @@ from utils.general import labels_to_class_weights, increment_path, labels_to_ima
38
  check_requirements, print_mutation, set_logging, one_cycle, colorstr
39
  from utils.google_utils import attempt_download
40
  from utils.loss import ComputeLoss
41
- from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
42
  from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
43
  from utils.loggers.wandb.wandb_utils import check_wandb_resume
44
  from utils.metrics import fitness
@@ -61,7 +60,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
61
  # Directories
62
  w = save_dir / 'weights' # weights dir
63
  w.mkdir(parents=True, exist_ok=True) # make dir
64
- last, best, results_file = w / 'last.pt', w / 'best.pt', save_dir / 'results.txt'
65
 
66
  # Hyperparameters
67
  if isinstance(hyp, str):
@@ -88,7 +87,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
88
 
89
  # Loggers
90
  if RANK in [-1, 0]:
91
- loggers = Loggers(save_dir, results_file, weights, opt, hyp, data_dict, LOGGER).start() # loggers dict
92
  if loggers.wandb and resume:
93
  weights, epochs, hyp, data_dict = opt.weights, opt.epochs, opt.hyp, loggers.wandb.data_dict
94
 
@@ -167,10 +166,6 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
167
  ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
168
  ema.updates = ckpt['updates']
169
 
170
- # Results
171
- if ckpt.get('training_results') is not None:
172
- results_file.write_text(ckpt['training_results']) # write results.txt
173
-
174
  # Epochs
175
  start_epoch = ckpt['epoch'] + 1
176
  if resume:
@@ -275,11 +270,11 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
275
  # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
276
  # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
277
 
278
- mloss = torch.zeros(4, device=device) # mean losses
279
  if RANK != -1:
280
  train_loader.sampler.set_epoch(epoch)
281
  pbar = enumerate(train_loader)
282
- LOGGER.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
283
  if RANK in [-1, 0]:
284
  pbar = tqdm(pbar, total=nb) # progress bar
285
  optimizer.zero_grad()
@@ -327,20 +322,13 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
327
  ema.update(model)
328
  last_opt_step = ni
329
 
330
- # Print
331
  if RANK in [-1, 0]:
332
  mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
333
  mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
334
- s = ('%10s' * 2 + '%10.4g' * 6) % (
335
- f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])
336
- pbar.set_description(s)
337
-
338
- # Plot
339
- if plots:
340
- if ni < 3:
341
- f = save_dir / f'train_batch{ni}.jpg' # filename
342
- Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
343
- loggers.on_train_batch_end(ni, model, imgs)
344
 
345
  # end batch ------------------------------------------------------------------------------------------------
346
 
@@ -371,13 +359,12 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
371
  fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
372
  if fi > best_fitness:
373
  best_fitness = fi
374
- loggers.on_train_val_end(mloss, results, lr, epoch, s, best_fitness, fi)
375
 
376
  # Save model
377
  if (not nosave) or (final_epoch and not evolve): # if save
378
  ckpt = {'epoch': epoch,
379
  'best_fitness': best_fitness,
380
- 'training_results': results_file.read_text(),
381
  'model': deepcopy(de_parallel(model)).half(),
382
  'ema': deepcopy(ema.ema).half(),
383
  'updates': ema.updates,
@@ -395,9 +382,6 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
395
  # end training -----------------------------------------------------------------------------------------------------
396
  if RANK in [-1, 0]:
397
  LOGGER.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n')
398
- if plots:
399
- plot_results(save_dir=save_dir) # save as results.png
400
-
401
  if not evolve:
402
  if is_coco: # COCO dataset
403
  for m in [last, best] if best.exists() else [last]: # speed, mAP tests
@@ -411,13 +395,11 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
411
  save_dir=save_dir,
412
  save_json=True,
413
  plots=False)
414
-
415
  # Strip optimizers
416
  for f in last, best:
417
  if f.exists():
418
  strip_optimizer(f) # strip optimizers
419
-
420
- loggers.on_train_end(last, best)
421
 
422
  torch.cuda.empty_cache()
423
  return results
 
12
  import time
13
  from copy import deepcopy
14
  from pathlib import Path
 
15
 
16
  import math
17
  import numpy as np
 
37
  check_requirements, print_mutation, set_logging, one_cycle, colorstr
38
  from utils.google_utils import attempt_download
39
  from utils.loss import ComputeLoss
40
+ from utils.plots import plot_labels, plot_evolution
41
  from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
42
  from utils.loggers.wandb.wandb_utils import check_wandb_resume
43
  from utils.metrics import fitness
 
60
  # Directories
61
  w = save_dir / 'weights' # weights dir
62
  w.mkdir(parents=True, exist_ok=True) # make dir
63
+ last, best = w / 'last.pt', w / 'best.pt'
64
 
65
  # Hyperparameters
66
  if isinstance(hyp, str):
 
87
 
88
  # Loggers
89
  if RANK in [-1, 0]:
90
+ loggers = Loggers(save_dir, weights, opt, hyp, data_dict, LOGGER).start() # loggers dict
91
  if loggers.wandb and resume:
92
  weights, epochs, hyp, data_dict = opt.weights, opt.epochs, opt.hyp, loggers.wandb.data_dict
93
 
 
166
  ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
167
  ema.updates = ckpt['updates']
168
 
 
 
 
 
169
  # Epochs
170
  start_epoch = ckpt['epoch'] + 1
171
  if resume:
 
270
  # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
271
  # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
272
 
273
+ mloss = torch.zeros(3, device=device) # mean losses
274
  if RANK != -1:
275
  train_loader.sampler.set_epoch(epoch)
276
  pbar = enumerate(train_loader)
277
+ LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
278
  if RANK in [-1, 0]:
279
  pbar = tqdm(pbar, total=nb) # progress bar
280
  optimizer.zero_grad()
 
322
  ema.update(model)
323
  last_opt_step = ni
324
 
325
+ # Log
326
  if RANK in [-1, 0]:
327
  mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
328
  mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
329
+ pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (
330
+ f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
331
+ loggers.on_train_batch_end(ni, model, imgs, targets, paths, plots)
 
 
 
 
 
 
 
332
 
333
  # end batch ------------------------------------------------------------------------------------------------
334
 
 
359
  fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
360
  if fi > best_fitness:
361
  best_fitness = fi
362
+ loggers.on_train_val_end(mloss, results, lr, epoch, best_fitness, fi)
363
 
364
  # Save model
365
  if (not nosave) or (final_epoch and not evolve): # if save
366
  ckpt = {'epoch': epoch,
367
  'best_fitness': best_fitness,
 
368
  'model': deepcopy(de_parallel(model)).half(),
369
  'ema': deepcopy(ema.ema).half(),
370
  'updates': ema.updates,
 
382
  # end training -----------------------------------------------------------------------------------------------------
383
  if RANK in [-1, 0]:
384
  LOGGER.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n')
 
 
 
385
  if not evolve:
386
  if is_coco: # COCO dataset
387
  for m in [last, best] if best.exists() else [last]: # speed, mAP tests
 
395
  save_dir=save_dir,
396
  save_json=True,
397
  plots=False)
 
398
  # Strip optimizers
399
  for f in last, best:
400
  if f.exists():
401
  strip_optimizer(f) # strip optimizers
402
+ loggers.on_train_end(last, best, plots)
 
403
 
404
  torch.cuda.empty_cache()
405
  return results
utils/loggers/__init__.py CHANGED
@@ -1,15 +1,17 @@
1
  # YOLOv5 experiment logging utils
2
 
3
  import warnings
 
4
 
5
  import torch
6
  from torch.utils.tensorboard import SummaryWriter
7
 
8
  from utils.general import colorstr, emojis
9
  from utils.loggers.wandb.wandb_utils import WandbLogger
 
10
  from utils.torch_utils import de_parallel
11
 
12
- LOGGERS = ('txt', 'tb', 'wandb') # text-file, TensorBoard, Weights & Biases
13
 
14
  try:
15
  import wandb
@@ -21,10 +23,8 @@ except (ImportError, AssertionError):
21
 
22
  class Loggers():
23
  # YOLOv5 Loggers class
24
- def __init__(self, save_dir=None, results_file=None, weights=None, opt=None, hyp=None,
25
- data_dict=None, logger=None, include=LOGGERS):
26
  self.save_dir = save_dir
27
- self.results_file = results_file
28
  self.weights = weights
29
  self.opt = opt
30
  self.hyp = hyp
@@ -35,7 +35,7 @@ class Loggers():
35
  setattr(self, k, None) # init empty logger dictionary
36
 
37
  def start(self):
38
- self.txt = True # always log to txt
39
 
40
  # Message
41
  try:
@@ -63,15 +63,19 @@ class Loggers():
63
 
64
  return self
65
 
66
- def on_train_batch_end(self, ni, model, imgs):
67
  # Callback runs on train batch end
68
- if ni == 0:
69
- with warnings.catch_warnings():
70
- warnings.simplefilter('ignore') # suppress jit trace warning
71
- self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
72
- if self.wandb and ni == 10:
73
- files = sorted(self.save_dir.glob('train*.jpg'))
74
- self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
 
 
 
 
75
 
76
  def on_train_epoch_end(self, epoch):
77
  # Callback runs on train epoch end
@@ -89,21 +93,28 @@ class Loggers():
89
  files = sorted(self.save_dir.glob('val*.jpg'))
90
  self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
91
 
92
- def on_train_val_end(self, mloss, results, lr, epoch, s, best_fitness, fi):
93
- # Callback runs on validation end during training
94
- vals = list(mloss[:-1]) + list(results) + lr
95
- tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
96
- 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
97
  'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
98
  'x/lr0', 'x/lr1', 'x/lr2'] # params
99
- if self.txt:
100
- with open(self.results_file, 'a') as f:
101
- f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
 
 
 
 
 
 
102
  if self.tb:
103
- for x, tag in zip(vals, tags):
104
- self.tb.add_scalar(tag, x, epoch) # TensorBoard
 
105
  if self.wandb:
106
- self.wandb.log({k: v for k, v in zip(tags, vals)})
107
  self.wandb.end_epoch(best_result=best_fitness == fi)
108
 
109
  def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
@@ -112,8 +123,10 @@ class Loggers():
112
  if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
113
  self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
114
 
115
- def on_train_end(self, last, best):
116
  # Callback runs on training end
 
 
117
  files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
118
  files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
119
  if self.wandb:
 
1
  # YOLOv5 experiment logging utils
2
 
3
  import warnings
4
+ from threading import Thread
5
 
6
  import torch
7
  from torch.utils.tensorboard import SummaryWriter
8
 
9
  from utils.general import colorstr, emojis
10
  from utils.loggers.wandb.wandb_utils import WandbLogger
11
+ from utils.plots import plot_images, plot_results
12
  from utils.torch_utils import de_parallel
13
 
14
+ LOGGERS = ('csv', 'tb', 'wandb') # text-file, TensorBoard, Weights & Biases
15
 
16
  try:
17
  import wandb
 
23
 
24
  class Loggers():
25
  # YOLOv5 Loggers class
26
+ def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, data_dict=None, logger=None, include=LOGGERS):
 
27
  self.save_dir = save_dir
 
28
  self.weights = weights
29
  self.opt = opt
30
  self.hyp = hyp
 
35
  setattr(self, k, None) # init empty logger dictionary
36
 
37
  def start(self):
38
+ self.csv = True # always log to csv
39
 
40
  # Message
41
  try:
 
63
 
64
  return self
65
 
66
+ def on_train_batch_end(self, ni, model, imgs, targets, paths, plots):
67
  # Callback runs on train batch end
68
+ if plots:
69
+ if ni == 0:
70
+ with warnings.catch_warnings():
71
+ warnings.simplefilter('ignore') # suppress jit trace warning
72
+ self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
73
+ if ni < 3:
74
+ f = self.save_dir / f'train_batch{ni}.jpg' # filename
75
+ Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
76
+ if self.wandb and ni == 10:
77
+ files = sorted(self.save_dir.glob('train*.jpg'))
78
+ self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
79
 
80
  def on_train_epoch_end(self, epoch):
81
  # Callback runs on train epoch end
 
93
  files = sorted(self.save_dir.glob('val*.jpg'))
94
  self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
95
 
96
+ def on_train_val_end(self, mloss, results, lr, epoch, best_fitness, fi):
97
+ # Callback runs on val end during training
98
+ vals = list(mloss) + list(results) + lr
99
+ keys = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
100
+ 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', # metrics
101
  'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
102
  'x/lr0', 'x/lr1', 'x/lr2'] # params
103
+ x = {k: v for k, v in zip(keys, vals)} # dict
104
+
105
+ if self.csv:
106
+ file = self.save_dir / 'results.csv'
107
+ n = len(x) + 1 # number of cols
108
+ s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # add header
109
+ with open(file, 'a') as f:
110
+ f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
111
+
112
  if self.tb:
113
+ for k, v in x.items():
114
+ self.tb.add_scalar(k, v, epoch) # TensorBoard
115
+
116
  if self.wandb:
117
+ self.wandb.log(x)
118
  self.wandb.end_epoch(best_result=best_fitness == fi)
119
 
120
  def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
 
123
  if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
124
  self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
125
 
126
+ def on_train_end(self, last, best, plots):
127
  # Callback runs on training end
128
+ if plots:
129
+ plot_results(dir=self.save_dir) # save results.png
130
  files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
131
  files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
132
  if self.wandb:
utils/loss.py CHANGED
@@ -162,8 +162,7 @@ class ComputeLoss:
162
  lcls *= self.hyp['cls']
163
  bs = tobj.shape[0] # batch size
164
 
165
- loss = lbox + lobj + lcls
166
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
167
 
168
  def build_targets(self, p, targets):
169
  # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
 
162
  lcls *= self.hyp['cls']
163
  bs = tobj.shape[0] # batch size
164
 
165
+ return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach()
 
166
 
167
  def build_targets(self, p, targets):
168
  # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
utils/plots.py CHANGED
@@ -1,7 +1,5 @@
1
  # Plotting utils
2
 
3
- import glob
4
- import os
5
  from copy import copy
6
  from pathlib import Path
7
 
@@ -387,63 +385,29 @@ def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
387
  plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
388
 
389
 
390
- def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
391
- # Plot training 'results*.txt', overlaying train and val losses
392
- s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
393
- t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
394
- for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
395
- results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
396
- n = results.shape[1] # number of rows
397
- x = range(start, min(stop, n) if stop else n)
398
- fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
399
- ax = ax.ravel()
400
- for i in range(5):
401
- for j in [i, i + 5]:
402
- y = results[j, x]
403
- ax[i].plot(x, y, marker='.', label=s[j])
404
- # y_smooth = butter_lowpass_filtfilt(y)
405
- # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
406
-
407
- ax[i].set_title(t[i])
408
- ax[i].legend()
409
- ax[i].set_ylabel(f) if i == 0 else None # add filename
410
- fig.savefig(f.replace('.txt', '.png'), dpi=200)
411
-
412
-
413
- def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
414
- # Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
415
  fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
416
  ax = ax.ravel()
417
- s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
418
- 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
419
- if bucket:
420
- # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
421
- files = ['results%g.txt' % x for x in id]
422
- c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
423
- os.system(c)
424
- else:
425
- files = list(Path(save_dir).glob('results*.txt'))
426
- assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
427
  for fi, f in enumerate(files):
428
  try:
429
- results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
430
- n = results.shape[1] # number of rows
431
- x = range(start, min(stop, n) if stop else n)
432
- for i in range(10):
433
- y = results[i, x]
434
- if i in [0, 1, 2, 5, 6, 7]:
435
- y[y == 0] = np.nan # don't show zero loss values
436
- # y /= y[0] # normalize
437
- label = labels[fi] if len(labels) else f.stem
438
- ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
439
- ax[i].set_title(s[i])
440
- # if i in [5, 6, 7]: # share train and val loss y axes
441
  # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
442
  except Exception as e:
443
- print('Warning: Plotting error for %s; %s' % (f, e))
444
-
445
  ax[1].legend()
446
- fig.savefig(Path(save_dir) / 'results.png', dpi=200)
447
 
448
 
449
  def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
 
1
  # Plotting utils
2
 
 
 
3
  from copy import copy
4
  from pathlib import Path
5
 
 
385
  plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
386
 
387
 
388
+ def plot_results(file='', dir=''):
389
+ # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
390
+ save_dir = Path(file).parent if file else Path(dir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391
  fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
392
  ax = ax.ravel()
393
+ files = list(save_dir.glob('results*.csv'))
394
+ assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
 
 
 
 
 
 
 
 
395
  for fi, f in enumerate(files):
396
  try:
397
+ data = pd.read_csv(f)
398
+ s = [x.strip() for x in data.columns]
399
+ x = data.values[:, 0]
400
+ for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
401
+ y = data.values[:, j]
402
+ # y[y == 0] = np.nan # don't show zero values
403
+ ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
404
+ ax[i].set_title(s[j], fontsize=12)
405
+ # if j in [8, 9, 10]: # share train and val loss y axes
 
 
 
406
  # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
407
  except Exception as e:
408
+ print(f'Warning: Plotting error for {f}: {e}')
 
409
  ax[1].legend()
410
+ fig.savefig(save_dir / 'results.png', dpi=200)
411
 
412
 
413
  def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
val.py CHANGED
@@ -171,7 +171,7 @@ def run(data,
171
 
172
  # Compute loss
173
  if compute_loss:
174
- loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
175
 
176
  # Run NMS
177
  targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
 
171
 
172
  # Compute loss
173
  if compute_loss:
174
+ loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls
175
 
176
  # Run NMS
177
  targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels