glenn-jocher
commited on
Commit
•
81b3182
1
Parent(s):
bd88e7f
Models `*.yaml` reformat (#3875)
Browse files- models/hub/yolov3-spp.yaml +33 -35
- models/hub/yolov3-tiny.yaml +24 -26
- models/hub/yolov3.yaml +33 -35
- models/hub/yolov5-fpn.yaml +24 -26
- models/hub/yolov5-p2.yaml +1 -3
- models/hub/yolov5-p6.yaml +1 -3
- models/hub/yolov5-p7.yaml +1 -3
- models/hub/yolov5-panet.yaml +29 -31
- models/hub/yolov5l6.yaml +1 -3
- models/hub/yolov5m6.yaml +1 -3
- models/hub/yolov5s-transformer.yaml +29 -31
- models/hub/yolov5s6.yaml +1 -3
- models/hub/yolov5x6.yaml +1 -3
- models/yolo.py +1 -1
- models/yolov5l.yaml +1 -3
- models/yolov5m.yaml +1 -3
- models/yolov5s.yaml +1 -3
- models/yolov5x.yaml +1 -3
models/hub/yolov3-spp.yaml
CHANGED
@@ -1,51 +1,49 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
|
12 |
# darknet53 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
]
|
27 |
|
28 |
# YOLOv3-SPP head
|
29 |
head:
|
30 |
-
[[-1, 1, Bottleneck, [1024, False]],
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
|
51 |
]
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
|
|
|
|
5 |
anchors:
|
6 |
+
- [ 10,13, 16,30, 33,23 ] # P3/8
|
7 |
+
- [ 30,61, 62,45, 59,119 ] # P4/16
|
8 |
+
- [ 116,90, 156,198, 373,326 ] # P5/32
|
9 |
|
10 |
# darknet53 backbone
|
11 |
backbone:
|
12 |
# [from, number, module, args]
|
13 |
+
[ [ -1, 1, Conv, [ 32, 3, 1 ] ], # 0
|
14 |
+
[ -1, 1, Conv, [ 64, 3, 2 ] ], # 1-P1/2
|
15 |
+
[ -1, 1, Bottleneck, [ 64 ] ],
|
16 |
+
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 3-P2/4
|
17 |
+
[ -1, 2, Bottleneck, [ 128 ] ],
|
18 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 5-P3/8
|
19 |
+
[ -1, 8, Bottleneck, [ 256 ] ],
|
20 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 7-P4/16
|
21 |
+
[ -1, 8, Bottleneck, [ 512 ] ],
|
22 |
+
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P5/32
|
23 |
+
[ -1, 4, Bottleneck, [ 1024 ] ], # 10
|
24 |
]
|
25 |
|
26 |
# YOLOv3-SPP head
|
27 |
head:
|
28 |
+
[ [ -1, 1, Bottleneck, [ 1024, False ] ],
|
29 |
+
[ -1, 1, SPP, [ 512, [ 5, 9, 13 ] ] ],
|
30 |
+
[ -1, 1, Conv, [ 1024, 3, 1 ] ],
|
31 |
+
[ -1, 1, Conv, [ 512, 1, 1 ] ],
|
32 |
+
[ -1, 1, Conv, [ 1024, 3, 1 ] ], # 15 (P5/32-large)
|
33 |
|
34 |
+
[ -2, 1, Conv, [ 256, 1, 1 ] ],
|
35 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
36 |
+
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
37 |
+
[ -1, 1, Bottleneck, [ 512, False ] ],
|
38 |
+
[ -1, 1, Bottleneck, [ 512, False ] ],
|
39 |
+
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
40 |
+
[ -1, 1, Conv, [ 512, 3, 1 ] ], # 22 (P4/16-medium)
|
41 |
|
42 |
+
[ -2, 1, Conv, [ 128, 1, 1 ] ],
|
43 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
44 |
+
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
45 |
+
[ -1, 1, Bottleneck, [ 256, False ] ],
|
46 |
+
[ -1, 2, Bottleneck, [ 256, False ] ], # 27 (P3/8-small)
|
47 |
|
48 |
+
[ [ 27, 22, 15 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
|
49 |
]
|
models/hub/yolov3-tiny.yaml
CHANGED
@@ -1,41 +1,39 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors:
|
8 |
-
- [10,14, 23,27, 37,58] # P4/16
|
9 |
-
- [81,82, 135,169, 344,319] # P5/32
|
10 |
|
11 |
# YOLOv3-tiny backbone
|
12 |
backbone:
|
13 |
# [from, number, module, args]
|
14 |
-
[[-1, 1, Conv, [16, 3, 1]], # 0
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
]
|
28 |
|
29 |
# YOLOv3-tiny head
|
30 |
head:
|
31 |
-
[[-1, 1, Conv, [1024, 3, 1]],
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
|
41 |
]
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
|
|
|
|
5 |
anchors:
|
6 |
+
- [ 10,14, 23,27, 37,58 ] # P4/16
|
7 |
+
- [ 81,82, 135,169, 344,319 ] # P5/32
|
8 |
|
9 |
# YOLOv3-tiny backbone
|
10 |
backbone:
|
11 |
# [from, number, module, args]
|
12 |
+
[ [ -1, 1, Conv, [ 16, 3, 1 ] ], # 0
|
13 |
+
[ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 1-P1/2
|
14 |
+
[ -1, 1, Conv, [ 32, 3, 1 ] ],
|
15 |
+
[ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 3-P2/4
|
16 |
+
[ -1, 1, Conv, [ 64, 3, 1 ] ],
|
17 |
+
[ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 5-P3/8
|
18 |
+
[ -1, 1, Conv, [ 128, 3, 1 ] ],
|
19 |
+
[ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 7-P4/16
|
20 |
+
[ -1, 1, Conv, [ 256, 3, 1 ] ],
|
21 |
+
[ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 9-P5/32
|
22 |
+
[ -1, 1, Conv, [ 512, 3, 1 ] ],
|
23 |
+
[ -1, 1, nn.ZeroPad2d, [ [ 0, 1, 0, 1 ] ] ], # 11
|
24 |
+
[ -1, 1, nn.MaxPool2d, [ 2, 1, 0 ] ], # 12
|
25 |
]
|
26 |
|
27 |
# YOLOv3-tiny head
|
28 |
head:
|
29 |
+
[ [ -1, 1, Conv, [ 1024, 3, 1 ] ],
|
30 |
+
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
31 |
+
[ -1, 1, Conv, [ 512, 3, 1 ] ], # 15 (P5/32-large)
|
32 |
|
33 |
+
[ -2, 1, Conv, [ 128, 1, 1 ] ],
|
34 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
35 |
+
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
36 |
+
[ -1, 1, Conv, [ 256, 3, 1 ] ], # 19 (P4/16-medium)
|
37 |
|
38 |
+
[ [ 19, 15 ], 1, Detect, [ nc, anchors ] ], # Detect(P4, P5)
|
39 |
]
|
models/hub/yolov3.yaml
CHANGED
@@ -1,51 +1,49 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
|
12 |
# darknet53 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
]
|
27 |
|
28 |
# YOLOv3 head
|
29 |
head:
|
30 |
-
[[-1, 1, Bottleneck, [1024, False]],
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
|
51 |
]
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
|
|
|
|
5 |
anchors:
|
6 |
+
- [ 10,13, 16,30, 33,23 ] # P3/8
|
7 |
+
- [ 30,61, 62,45, 59,119 ] # P4/16
|
8 |
+
- [ 116,90, 156,198, 373,326 ] # P5/32
|
9 |
|
10 |
# darknet53 backbone
|
11 |
backbone:
|
12 |
# [from, number, module, args]
|
13 |
+
[ [ -1, 1, Conv, [ 32, 3, 1 ] ], # 0
|
14 |
+
[ -1, 1, Conv, [ 64, 3, 2 ] ], # 1-P1/2
|
15 |
+
[ -1, 1, Bottleneck, [ 64 ] ],
|
16 |
+
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 3-P2/4
|
17 |
+
[ -1, 2, Bottleneck, [ 128 ] ],
|
18 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 5-P3/8
|
19 |
+
[ -1, 8, Bottleneck, [ 256 ] ],
|
20 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 7-P4/16
|
21 |
+
[ -1, 8, Bottleneck, [ 512 ] ],
|
22 |
+
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P5/32
|
23 |
+
[ -1, 4, Bottleneck, [ 1024 ] ], # 10
|
24 |
]
|
25 |
|
26 |
# YOLOv3 head
|
27 |
head:
|
28 |
+
[ [ -1, 1, Bottleneck, [ 1024, False ] ],
|
29 |
+
[ -1, 1, Conv, [ 512, [ 1, 1 ] ] ],
|
30 |
+
[ -1, 1, Conv, [ 1024, 3, 1 ] ],
|
31 |
+
[ -1, 1, Conv, [ 512, 1, 1 ] ],
|
32 |
+
[ -1, 1, Conv, [ 1024, 3, 1 ] ], # 15 (P5/32-large)
|
33 |
|
34 |
+
[ -2, 1, Conv, [ 256, 1, 1 ] ],
|
35 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
36 |
+
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
37 |
+
[ -1, 1, Bottleneck, [ 512, False ] ],
|
38 |
+
[ -1, 1, Bottleneck, [ 512, False ] ],
|
39 |
+
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
40 |
+
[ -1, 1, Conv, [ 512, 3, 1 ] ], # 22 (P4/16-medium)
|
41 |
|
42 |
+
[ -2, 1, Conv, [ 128, 1, 1 ] ],
|
43 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
44 |
+
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
45 |
+
[ -1, 1, Bottleneck, [ 256, False ] ],
|
46 |
+
[ -1, 2, Bottleneck, [ 256, False ] ], # 27 (P3/8-small)
|
47 |
|
48 |
+
[ [ 27, 22, 15 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
|
49 |
]
|
models/hub/yolov5-fpn.yaml
CHANGED
@@ -1,42 +1,40 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
|
12 |
# YOLOv5 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
-
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
]
|
26 |
|
27 |
# YOLOv5 FPN head
|
28 |
head:
|
29 |
-
[[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large)
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
|
41 |
-
|
42 |
]
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
|
|
|
|
5 |
anchors:
|
6 |
+
- [ 10,13, 16,30, 33,23 ] # P3/8
|
7 |
+
- [ 30,61, 62,45, 59,119 ] # P4/16
|
8 |
+
- [ 116,90, 156,198, 373,326 ] # P5/32
|
9 |
|
10 |
# YOLOv5 backbone
|
11 |
backbone:
|
12 |
# [from, number, module, args]
|
13 |
+
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
14 |
+
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
15 |
+
[ -1, 3, Bottleneck, [ 128 ] ],
|
16 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
17 |
+
[ -1, 9, BottleneckCSP, [ 256 ] ],
|
18 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
19 |
+
[ -1, 9, BottleneckCSP, [ 512 ] ],
|
20 |
+
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
|
21 |
+
[ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ],
|
22 |
+
[ -1, 6, BottleneckCSP, [ 1024 ] ], # 9
|
23 |
]
|
24 |
|
25 |
# YOLOv5 FPN head
|
26 |
head:
|
27 |
+
[ [ -1, 3, BottleneckCSP, [ 1024, False ] ], # 10 (P5/32-large)
|
28 |
|
29 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
30 |
+
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
31 |
+
[ -1, 1, Conv, [ 512, 1, 1 ] ],
|
32 |
+
[ -1, 3, BottleneckCSP, [ 512, False ] ], # 14 (P4/16-medium)
|
33 |
|
34 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
35 |
+
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
36 |
+
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
37 |
+
[ -1, 3, BottleneckCSP, [ 256, False ] ], # 18 (P3/8-small)
|
38 |
|
39 |
+
[ [ 18, 14, 10 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
|
40 |
]
|
models/hub/yolov5-p2.yaml
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors: 3
|
8 |
|
9 |
# YOLOv5 backbone
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
|
|
|
|
5 |
anchors: 3
|
6 |
|
7 |
# YOLOv5 backbone
|
models/hub/yolov5-p6.yaml
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors: 3
|
8 |
|
9 |
# YOLOv5 backbone
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
|
|
|
|
5 |
anchors: 3
|
6 |
|
7 |
# YOLOv5 backbone
|
models/hub/yolov5-p7.yaml
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors: 3
|
8 |
|
9 |
# YOLOv5 backbone
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
|
|
|
|
5 |
anchors: 3
|
6 |
|
7 |
# YOLOv5 backbone
|
models/hub/yolov5-panet.yaml
CHANGED
@@ -1,48 +1,46 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
|
12 |
# YOLOv5 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
-
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
]
|
26 |
|
27 |
# YOLOv5 PANet head
|
28 |
head:
|
29 |
-
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
|
47 |
-
|
48 |
]
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
|
|
|
|
5 |
anchors:
|
6 |
+
- [ 10,13, 16,30, 33,23 ] # P3/8
|
7 |
+
- [ 30,61, 62,45, 59,119 ] # P4/16
|
8 |
+
- [ 116,90, 156,198, 373,326 ] # P5/32
|
9 |
|
10 |
# YOLOv5 backbone
|
11 |
backbone:
|
12 |
# [from, number, module, args]
|
13 |
+
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
14 |
+
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
15 |
+
[ -1, 3, BottleneckCSP, [ 128 ] ],
|
16 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
17 |
+
[ -1, 9, BottleneckCSP, [ 256 ] ],
|
18 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
19 |
+
[ -1, 9, BottleneckCSP, [ 512 ] ],
|
20 |
+
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
|
21 |
+
[ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ],
|
22 |
+
[ -1, 3, BottleneckCSP, [ 1024, False ] ], # 9
|
23 |
]
|
24 |
|
25 |
# YOLOv5 PANet head
|
26 |
head:
|
27 |
+
[ [ -1, 1, Conv, [ 512, 1, 1 ] ],
|
28 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
29 |
+
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
30 |
+
[ -1, 3, BottleneckCSP, [ 512, False ] ], # 13
|
31 |
|
32 |
+
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
33 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
34 |
+
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
35 |
+
[ -1, 3, BottleneckCSP, [ 256, False ] ], # 17 (P3/8-small)
|
36 |
|
37 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
38 |
+
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
|
39 |
+
[ -1, 3, BottleneckCSP, [ 512, False ] ], # 20 (P4/16-medium)
|
40 |
|
41 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ],
|
42 |
+
[ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5
|
43 |
+
[ -1, 3, BottleneckCSP, [ 1024, False ] ], # 23 (P5/32-large)
|
44 |
|
45 |
+
[ [ 17, 20, 23 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
|
46 |
]
|
models/hub/yolov5l6.yaml
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors:
|
8 |
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
- [ 96,68, 86,152, 180,137 ] # P4/16
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
|
|
|
|
5 |
anchors:
|
6 |
- [ 19,27, 44,40, 38,94 ] # P3/8
|
7 |
- [ 96,68, 86,152, 180,137 ] # P4/16
|
models/hub/yolov5m6.yaml
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 0.67 # model depth multiple
|
4 |
width_multiple: 0.75 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors:
|
8 |
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
- [ 96,68, 86,152, 180,137 ] # P4/16
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 0.67 # model depth multiple
|
4 |
width_multiple: 0.75 # layer channel multiple
|
|
|
|
|
5 |
anchors:
|
6 |
- [ 19,27, 44,40, 38,94 ] # P3/8
|
7 |
- [ 96,68, 86,152, 180,137 ] # P4/16
|
models/hub/yolov5s-transformer.yaml
CHANGED
@@ -1,48 +1,46 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 0.33 # model depth multiple
|
4 |
width_multiple: 0.50 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
|
12 |
# YOLOv5 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
-
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
]
|
26 |
|
27 |
# YOLOv5 head
|
28 |
head:
|
29 |
-
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
|
47 |
-
|
48 |
]
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 0.33 # model depth multiple
|
4 |
width_multiple: 0.50 # layer channel multiple
|
|
|
|
|
5 |
anchors:
|
6 |
+
- [ 10,13, 16,30, 33,23 ] # P3/8
|
7 |
+
- [ 30,61, 62,45, 59,119 ] # P4/16
|
8 |
+
- [ 116,90, 156,198, 373,326 ] # P5/32
|
9 |
|
10 |
# YOLOv5 backbone
|
11 |
backbone:
|
12 |
# [from, number, module, args]
|
13 |
+
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
14 |
+
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
15 |
+
[ -1, 3, C3, [ 128 ] ],
|
16 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
17 |
+
[ -1, 9, C3, [ 256 ] ],
|
18 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
19 |
+
[ -1, 9, C3, [ 512 ] ],
|
20 |
+
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
|
21 |
+
[ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ],
|
22 |
+
[ -1, 3, C3TR, [ 1024, False ] ], # 9 <-------- C3TR() Transformer module
|
23 |
]
|
24 |
|
25 |
# YOLOv5 head
|
26 |
head:
|
27 |
+
[ [ -1, 1, Conv, [ 512, 1, 1 ] ],
|
28 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
29 |
+
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
30 |
+
[ -1, 3, C3, [ 512, False ] ], # 13
|
31 |
|
32 |
+
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
33 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
34 |
+
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
35 |
+
[ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
|
36 |
|
37 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
38 |
+
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
|
39 |
+
[ -1, 3, C3, [ 512, False ] ], # 20 (P4/16-medium)
|
40 |
|
41 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ],
|
42 |
+
[ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5
|
43 |
+
[ -1, 3, C3, [ 1024, False ] ], # 23 (P5/32-large)
|
44 |
|
45 |
+
[ [ 17, 20, 23 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
|
46 |
]
|
models/hub/yolov5s6.yaml
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 0.33 # model depth multiple
|
4 |
width_multiple: 0.50 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors:
|
8 |
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
- [ 96,68, 86,152, 180,137 ] # P4/16
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 0.33 # model depth multiple
|
4 |
width_multiple: 0.50 # layer channel multiple
|
|
|
|
|
5 |
anchors:
|
6 |
- [ 19,27, 44,40, 38,94 ] # P3/8
|
7 |
- [ 96,68, 86,152, 180,137 ] # P4/16
|
models/hub/yolov5x6.yaml
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.33 # model depth multiple
|
4 |
width_multiple: 1.25 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors:
|
8 |
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
- [ 96,68, 86,152, 180,137 ] # P4/16
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.33 # model depth multiple
|
4 |
width_multiple: 1.25 # layer channel multiple
|
|
|
|
|
5 |
anchors:
|
6 |
- [ 19,27, 44,40, 38,94 ] # P3/8
|
7 |
- [ 96,68, 86,152, 180,137 ] # P4/16
|
models/yolo.py
CHANGED
@@ -154,7 +154,7 @@ class Model(nn.Module):
|
|
154 |
|
155 |
x = m(x) # run
|
156 |
y.append(x if m.i in self.save else None) # save output
|
157 |
-
|
158 |
if feature_vis and m.type == 'models.common.SPP':
|
159 |
feature_visualization(x, m.type, m.i)
|
160 |
|
|
|
154 |
|
155 |
x = m(x) # run
|
156 |
y.append(x if m.i in self.save else None) # save output
|
157 |
+
|
158 |
if feature_vis and m.type == 'models.common.SPP':
|
159 |
feature_visualization(x, m.type, m.i)
|
160 |
|
models/yolov5l.yaml
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors:
|
8 |
- [10,13, 16,30, 33,23] # P3/8
|
9 |
- [30,61, 62,45, 59,119] # P4/16
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.0 # model depth multiple
|
4 |
width_multiple: 1.0 # layer channel multiple
|
|
|
|
|
5 |
anchors:
|
6 |
- [10,13, 16,30, 33,23] # P3/8
|
7 |
- [30,61, 62,45, 59,119] # P4/16
|
models/yolov5m.yaml
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 0.67 # model depth multiple
|
4 |
width_multiple: 0.75 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors:
|
8 |
- [10,13, 16,30, 33,23] # P3/8
|
9 |
- [30,61, 62,45, 59,119] # P4/16
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 0.67 # model depth multiple
|
4 |
width_multiple: 0.75 # layer channel multiple
|
|
|
|
|
5 |
anchors:
|
6 |
- [10,13, 16,30, 33,23] # P3/8
|
7 |
- [30,61, 62,45, 59,119] # P4/16
|
models/yolov5s.yaml
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 0.33 # model depth multiple
|
4 |
width_multiple: 0.50 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors:
|
8 |
- [10,13, 16,30, 33,23] # P3/8
|
9 |
- [30,61, 62,45, 59,119] # P4/16
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 0.33 # model depth multiple
|
4 |
width_multiple: 0.50 # layer channel multiple
|
|
|
|
|
5 |
anchors:
|
6 |
- [10,13, 16,30, 33,23] # P3/8
|
7 |
- [30,61, 62,45, 59,119] # P4/16
|
models/yolov5x.yaml
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
#
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.33 # model depth multiple
|
4 |
width_multiple: 1.25 # layer channel multiple
|
5 |
-
|
6 |
-
# anchors
|
7 |
anchors:
|
8 |
- [10,13, 16,30, 33,23] # P3/8
|
9 |
- [30,61, 62,45, 59,119] # P4/16
|
|
|
1 |
+
# Parameters
|
2 |
nc: 80 # number of classes
|
3 |
depth_multiple: 1.33 # model depth multiple
|
4 |
width_multiple: 1.25 # layer channel multiple
|
|
|
|
|
5 |
anchors:
|
6 |
- [10,13, 16,30, 33,23] # P3/8
|
7 |
- [30,61, 62,45, 59,119] # P4/16
|